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INTRODUCTION 

The theory of controllability and observability has been 

developed, one might almost say reluctantly, in response to problems 

generated by technological science, especially in areas related to 

control, communication, and computers. It seems that the first 

conscious steps to formalize these matters as a separate area of 

( system-theoretic or mathematical) research were undertaken only as 

late as 1959, by KALMAN k960b-c 1. There have been, however, many 

scattered results before this time (see Section 12 for some historical 

comments and references), and one hght confidently assert today that 

some ofthe main results have been discovered, more or less independ- 

ently, in every country which has reached an advanced stage of 

"development" and it is certain that these same results will be 

rediscovered again in still more places as other countries progress 

on the road to development. 

.. With the perspective afforded by ten years of happenings in 
I 

this field, we ought not hesitate to make some guesses of the signi- 

ficance of what has been accomplished. I see two main trends: 

(i) The use of the concepts of controlla5ility and observability 

to study nonclassical questions in optimal control and optimal estima- 

tion theory, sometimes as basic hypotheses securing existence, more 

often as seemingly technical colditions which allow a sharper statement 

of results or shorter proofs. 

(ii) Interaction between the concepts of controllability and 

observability and the study of structure of dynamical systems, such 
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as: formulation and solution of the problem of realization, 

canonical forms, decomposition of systems. 

The first of these topics is older and has been studied 

primarily from the point of view of analysis, although the basic 

lemma (2.7 ) is purely algebraic. The second group of topics 

may be viewed as "blowing up" the ideas inherent in the basic 

lemma (2.7 ), resulting in a more and more strictly algebraic point 

of view. 

There is active research in both areas. 

In the first, attention has shifted from the case of systems 

governed by finite-dimensional linear differential equations with 

constant coefficients (where success was quick and total) to systems 

governed by infinite-dimensional linear differential equztions (delay 

differential equations, classical types of partial different2al 

equations, etc . ) , to finite-dimensional linear differential equa- 
tions with time-dependent coefficients, and finally to all sorts 

and subsorts of nonlinear differential equations. The first two 

topics are surveyed concurrently by WEISS i~g6gl while MARKUS [ 1965 I 

looks at the nonlinear situation. 

My own current interest lies in the second strem, and these 

lectures will deal primarily with it, after a rather hurried over- 

Giew of the general problem and of the "classicalt1 results. 

Let us take a quick look at the most important of these "cla~sical'~ 

results. For con~enience I shall describe them in system-theoretic 
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(rather than conventional pure mathematical) language. The mathe- 

matically t ra ined  reader should have no d i f f i cu l ty  i n  converting 

them in to  h i s  preferred framework, by digging a l i t t l e  in to  the 

references. 

In area ( i ) ,  the  most important r e su l t s  a re  probably those 

which give more or  l e s s  expl ic i t  and computable r e su l t s  fo r  control- 

l a b i l i t y  and observabili ty of cer ta in  specif ic  classes of systems. 

Beyond these, there  seem t o  be two main theorems: 

L THEOREM A. A real ,  continuous-t ime, n-dimensional, constant, 

l inear  dynamical system C has the property "every s e t  of n 

eigenvalues may be produ-ced by sui table  s t a t e  feedback" i f  and 

only if 5 i s  completely controllable. 

The cen t ra l  spec ia l  case is t rea ted  i n  great d e t a i l  by KAI;MAN, 

FU3,  and ARBIB [1969, Chapter 2, Theorem 5.101; for  a proof of the 

general case with background comments, re fer  t o  WONITAM [ 1967 3. As 

a part icular  case, tre have tha t  every system sat isfying the hypotheses 

of the theorem can be "stabilizedl1 (made t o  have eigenvalues with 

negative r e a l  par t s )  v i a  a sui table  choice of feedbaek. This r e su l t  

i s  the "existence theorem" f o r  algorithms used t o  construct c o n t r ~ l  

systems for  the  past  thee decades, znd ye t  a conscious formulation 

of the problem and i t s  mathematical solct ion go back t:, about 19631 

(see Theorem D below. ) The analogous problem f o r  nonconstant l inear  

systems (governed.by l inea r  d i f f e ren t i a l  equations with variable 

coefficients) i s  s t i l l  not solved. 
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IIRRIREM B. ("Duality ~rinci~le") Every problem of control- 

lability in a real, (continuous-time, or discrete-time), finite- 

dimensional, constant, linear dynamical system is equivalent to 

a controllability problem in a dual system. 

This fact was first observed by KALMAN [ 1960al in the solution 

of the optimal stochastic filtering problem for discrete-time 

systems, and was soon applied to several problems in system theory by 

KALMAN (1960b-cl . See also many related comments by KALMAN, FALB, 

and ARBIB [chapters 2 and 6, 19691. As a theorem, this principle 

is not yet known to be valid outside the linear area, but as an 

intuitive prescription it has been rather usef'ul in guiding system- 

theoretic research. The problems involved here are those of fomula- 

tion rather than proof. The basic difficulties seem to point toward 

algebra and in particular category theory. System-theoretic 

duality, like the categoric one, is concerned with "revers'ing 

arrows". See Section 10 for a modern discussion of these points 

and a precise version of Theorem B. 

Partly as a result of the questions raised by Theorem B and 

partly because of the algebraic techniques needed to prove Theorem 

A and related lemmas, attention in the early 19601s shifted toward 

certain problems of a structural nature which were, somewbat sur- 

prisingly at first, found to be related to controllability and 

observability. The main theorems again seem to be two: 

THEOREM C . (canonical ~ecomposition) Every real ( co$inuous- 

time or discrete-time), finite-dinensional, cans%s~t,, linear avnamical 
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F- 
%stem may be canonically decomposed into four parts, of which only 

one part, that which is completely controllzble and completely observ- 

able, is involved in the input/output behavior of the system. 

The proof given by W M  [1962] applies to nonconsta~t systems 

only under the severe restriction that the dimensions of the sub- 

space of all control.lable and all unobservable states is constant 

on the whole real line. The result represented by Theorem C is far from 

definitive, however, since f inite-dimensional linear, 2cnconsta>t systems 

admit at least four differez: canonical decompositic.na: it is 

possible and fruitf'ul to dualize the notions of controllability 

and observability, thereby arriving at - four properties, present'ljr 

called 

reachability and controllability 

as well as 

constructibility" and observability. 

(see Section 2 definitions.) Any combi~ation of a property from 

the first list with a property from the second list gives a canoni- 

cal decomposition result analogous to meorem C. The complexity of 

the situation was first revealed by \IEISS zfid KAIWLN [19$] ; this 

paper contributed to a revival of interest (with hopes of success) 

In the special problems of nonconstant.linear systems. Recent 

'AWEISS [1969] uses "determinabilityl1 instead of constructi- 
bility. The new terminology used in these lectures is not yet 
entirely standard. 
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progress is surveyed by WEISS [ 19693 . Intimately related to the 
canonical structure theorkm, and in fact necessary to Mly clarify 

the phrase "involved in the input/output behavior of the system1: is 

the last basic result: 

THEORE24 D. (uniqueness of Minimal ~ealization) Given the 

impulse-response matrix W of a real, continuous-time, finite- 

dimensional, linear dynamical system, there exists a 3eal,'continuous- 

time, finite-dimensional, linear dynanical system 5 which 

(a) realizes W: that is, the impulse-response matrix of 

% is equal to W; 

(b) has minimal dimension in the class 02 linear systems 

sa'tisfying (a) ; 

c) is rcomplet ely controllable and compbete1.y observable.; 

f(d) is uniquely determined (modulo the choice of a basis 

gar its state space) by reauirenlent - 
t o g e t b r  with ('b) or, independently, by (a) together with 

(4 
In short, for any W as described above, there is an "essentially 

uniq-iiel1 of the same "type1' which satisfies (a) through (c) . 

COROLLARY 1. - If W comes from a consta~t system, there is a 

constant % which satisfies (a) khrough (c), and is uniquely 

determined by (a) + (b) - or (a) + ( c )  (modulo a fixed choice of 

basis for its state space). 
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CQROmY 2. A 1 1  claims of Corollary 1 continue t o  hold i f  

"impulse-response matrix of a constz.nt, finite-dimensional system" 

i s  replaced by " t r a x f e r  f'unction matrix of a constant, f i n i t e -  

dimensional systemu. 

The first general discussion of the  s i tua t ion  with a n  equiva- 

l e n t  statement of Theorem D i s  due t o  W!T [1963b, Theorems 7 

and 83.  h his paper: does not include cozlplete proofs, o r  even 

an expl ic i t  statement of Corollaries 1 zr.d 2, although they a re  

implied by the  general algorithm given i n  Section 7. An edited 

version of the or ig ina l  unpublished proof of Theorem D i s  given 

i n  KAWAN, FAI;By and ARBIB 1969, Chapter 10, Appendix c ] . ) 
These r e s u l t s  are '  of great importalrce i n  'engineering system 

theory since they r e l a t e  methods based on the Laplace transform 

(using the t ransfer  fbnction of the systen) mnd the time-damin 

methods based on input/output data (the m t r i x  W) t o  %he s tate-  

variable (dynmical  system) methods devzloped i n  1955-1960.' I n  

fact ,  by Corollary 1 it follows tha t  the t~:o methods ?met yield 

ident ica l  resu l t s ;  for  instance, s t a r t ing  with a constant impulse- 

response matrix W, propert~r (c) implies thaz the  existence 

of a s table  control l ay  i s  always assured by v i r tue  of Theorem A. 

Thus it i s  only a f t e r  t he  development represented by Theorems A-D 

tha t  a rigorous jus t i f i ca t ion  i s  obtained fo r  the in tu i t ive  design 

methods used i n  control  engineering. 

As  with   he or em C, ce r ta in  forinulationzl d i f  f ' iculties a r i se  

i n  connection with a precise def ini t ion of a "nonconstant l inear  



d y d c a l  system". Thus, it $eems preferable at present to replace 

in Theorem D "impulse-response matrix W" by "weighting pattern W1' 

(or "abstract input/output map w") -and "complete controllability" 

by "complete reachabilityl'. The definitive form of the 1963 theorem 

evolved through the works of WEISS and KllIiEi'iAN 11965 1, YOULA [1966], 

and KAINAN; a precise formulation and modernized proof of Theorem D 

in the weighting pattern case was given recently by KALMAN, FAD, 

and ARBIB [1969, Chapter 10, Section 13. ] A completely general 

discussion of what is meant by a "minimal realizationn of a non- 

constant impulse-response matrix involves many technical complica- 

tions due to the fact that such a minimal realization does not 

exist in the class of linear differential equations with "nice1' 

coefficient f'unctions. For the current status of this probleia, 

consult especially DESOER and V A W Y A  [19671, SILVERMAIT and MEADOWS 

[ 19691, KUMAN, FAI;B, and ARBIB [ 1969, Chapter 10, Section 13 1 and 

WEISS [ 19691 . 
From the standpoint of the present lectures, by far the most 

interesting consequence of Theorem D is its influence, via efforts 

to arrive at a definitive proof of Corollary 1, on the development 

of the algebraic stream of system theory. The first proof of this 

important result (in the special case of disklnct eigenvalues) is 

that of GILBERT [1963]. Immediately afterwards, a general proof 

was given by WlLMAN [ 1963b, Section 7 I. This proof, strictly 

computational and.linear algebraic in nature, yields no theore~l- 
\ 

cal insight although it is usef'ul as the basis of a computer algorithm. 
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Using the classical theory of invariant factors, KALEJL9N [1965a] 

succeeded in showing that the solution of the minimal realization 

problem can be efTectively reduced to the classical invariant- 

factor algorithm. This result is of great theoretical interest . 
since it strongly suggests the now standard module theoretic 

approach, but it does not lead to a simple proof of Corollary 1 

and is not a practical method of computation. 

The best known proof of Corollary 1 was obtained in 1965 by 

B'. L. Ho, with the aid of a remarkable algorithm, which is equally important 

from a theoretical and computational viewpoint. The early formula- 

tion of the algorithm was described by HO and MIXAN [1966], with 

later refinements discussed in HO and KALMAN [lg6gl, KALhIAI?, FALB, 

and ARBIB [ 1969, Chapter 10, Section 111 and K A W  [ 1969~1. 

Almost simultaneously with the work of B. L. Ho, the basic results 

were discovered independently also by YOULA and TISSI [1966] and 

by SILVERM!!q [19661. The subject goes back to the 19th century 

and centers around.the theory of Hankel matrices; however, many 

ofthe results just referenced seem to be f'undamentally new. This 

field is currently in a very active stage of develogment. We shall 

discuss the essential ideas involved in Sections 8-9. Ma-ny other 

topics, especially Silvemanls generalization of the algorithm to 

nonconstant systems unfortunately cannot be covered due to lack of 

time, 



fl. E, Kalman 

Acknowledgment 

It is a pleasure to thank C. I. M. E. and its organizers, 

especially Professors E. Bompiani, E. Sarti, and E. Belardinelli, 

for arranging a special conference on these to2ics. The sunny 

skies and hospitality of Italy; along with Bolognese food p1a.yed 

a subsidiary but vital part in the success of this important 

gathering of scientists. 



R. E. Kalman 

1. CLASSICAL AM> MODERN DYNAMICAL SYSTEMS 

I n  mathematics the  term dynamical system (synonyms: topological 

dynamics, flows, abstract  dynamics, etc.)  usually connotes the action 

of a one-parameter group T (t'le rea ls )  on a se t  X, where X i s  

at  l e a s t  a topological space (more often, a different iable  manifold) 

and the  action i s  at l e a s t  continuous. This setup i s  physically 

motimted, but i n  a very old-fashioned sense. A "dynamical system" 

as just  defined i s  an idealization, generalization, and abstraction 

o f  Newtonts world view of the Solar System as  described v i a  a f i n i t e  se t  of 

nonlinear ordinary d i f f e ren t i a l  equations. These equations represent 

the  positions and momenta of the  planets regarded as point masSes and 

a re  completely determined by the  laws of gravitation, i.e., they do 

not contain any terms t o  account for  "external" forces tha t  may ac t  

on the system. 

Interesting as t h i s  notation of a dynamical system may be (and 

i s l )  i n  pure mathematics, it i s  much too limited for  the study of 

those dynamical systems which are  of contemporary in teres t .  There 

a re  a t  l eas t  three d i f f e r in t  way& i n  which the c lass ica l  concept 

must be generalized: 

( i )  The t i n e  se t  of the system i s  not necessarily res t r ic ted  

t o  the reals;  

( i i )  A s t a t e  x E X of the system i s  not merely acted . . upon , . by 

. J& 

the  "passage of time" but also by inputs which are or  c6&3Te mani- 

pulated t o  bring about a desired type of behavior; 
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( i i i )  The s ta tes  of the system cannot, i n  general, be observed. 

Rather, the physical behavior of $he system i s  manifested through 

i t s  outputs which are  many-to-one functions of the s tate .  

The generalization of the  time se t  i s  of minor in teres t  t o  us 

here. The notions of input and output, however, a re  exceedingly 

f'undamental; i n  fact, cont ro l lab i l i ty  i s  related t o  the input and 

observability t o  the output. With respect t o  dynamical systems i n  

the  c lass ica l  sense, neither control labi l i ty  nor observability are  

meaningful concepts. 

A much more detailed discussion of dynamical systems i n  the modern 

sense, together with rather  detailed precise definitions, w i l l  be 

found i n  KALMAN, FALB, and ARBIB [1969, Chapter 1 1  . 
From here on, we w i l l  use the term I'dynamical system1' exclusively 

i n  the modern sense (we have already done so i n  the ~ntroduct ion) .  

The following symbols w i l l  have a fixed meaning throughout the 

paper : 

T = time set, 

U = se t  of input values, 

X = s t a t e  set, 

(1.1) Y = se t  of outpv-t values, 

R = input functions, 

cp = t rans i t ion  map, 

q = readout map. 

The following assumptio~s w i l l  always apply (otherwise the se t s  

above are arbitrary) : 
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T = an ordered subset of the r ea l s  l?, - 
52 = c lass  of f'unctions T + U such tha t  

( i )  each function w i s  undefined outside some 

f i n i t e  in te rva l  JU C T dependent on w; 

(ii) if JU n Ju, = , there i s  a function 

w E R which agrees with w on JU and 

For mosl-, _cu2;3sea l a t e r ,  T w i l l  be equal t o  Z. = (ordered) - 
11 abel ian group of integers; U, X, Y, 52 w i l l  be l inear  spaces; unde- 

fined" can be replaced by "equal t o  0"; and "functions undefined out- 

s ide a f i n i t e  interval" w i l l  mean the same as " f in i t e  sequences". 

The most general notion of a dyimnical system fo r  our present 

needs i s  given by the followirlg 

(1.3) DEFINITION. A dynamical system C i s  a compo'site object - -- 
consjsting of the maps cp, q defined on the se t s  T, U, R, X, Y 

(as  above) : - 

cp: T X T X X X R - ,  X, 

: (t; 7, X, w) c3 q(t ;  7, x, 0 )  

undefined whenever t > T; - - 

7: T X X -  Y: ( t ,  x) I-+ ~ ( t ,  x). 

The t r ans i t ion  & s a t i s f y t ~  the following asbumptions: - 
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i f  w = cul on [T, t ] ,  then fo r  a l l  s E [T, t ]  - - 
q(s; 7, X, W) = q(s; 7, x, m'). 

The def in i t ion  of a dynamical system on t h i s  l eve l  of generali ty 

should be regarded only a s  a scaffolding fo r  the terminology; intere&- - * 4  - - 
ing  mathematics begins only a f t e r  fur ther  hypotheses a re  made. For 

instance, it i s  usually necessary t o  endow the  se t s  T, U, R, X, and 

Y with a topology and then require t h a t  and 9 be continuous. 

(1.7) MAEIIPLE. The c l a s s i ca l  setup i n  topological dynamics may 

be deduced from our Definition (1.3) i n  the  following way. Let 

T = 5 = reals,  regarded a s  an abelian group under the usual addition - 
and having t h e  usual topology; l e t  R consist  only of the nowhere- 

defined function; l e t  X .  be topological space; disregard Y and 7 ent i rely;  

define cp f o r  - a l l  t, T E T and write it a s  

q ( t ;  T, X, W) = ~ ' ( t  - T), 

t h a t  is, a f'unction of x and t - T alone. Check (1.4-5); i n  

the  new notat ion Yney becoffie 

x.0 = x and x * ( s  + t )  = ( x i s ) * t .  

Finally, require t h a t  the  map (x, t) w x - t  be continuous. 

(1.8) INTERPRETATION. The essent ia l  idea of ~ e f i n i t i o n  (1.3) i s  

t h a t  it axiomatizes the notion of s ta te .  A dynamical system i s  informally 
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a ru le  for  s t a t e  t rans i t ions  (the f'unction ) together with suitable 

means of expressing the effect  of the  input on the s t a t e  and the ef fec t  

of the s t a t e  on the output (the f'unction T)). The map cp i s  verbalized 

as follows: ''an input a, applied t o  the system C i n  s t a t e  x at 

time T produces the s t a t e  ~ ( t ;  T, x, a )  a t  time t." The peculiar 

defini t ion of an input f'unction i s  used here mainly for  technical 

convenience; by (1.6) only equivalence classes of inputs agreeing over 

[T, t ]  enter in to  the determination of cp( t ;  T, X, a). "a not defined" 

at t means no Input a c t s  on C at time t 

The pa i r  (7, x) E T X X w i l l  be called an event of a dynamical 

system C. 

In  the sequel, we sha l l  be concerned primarily with systems which 

are finite-dimensicnal, l inear,  and continuous-time or discrete-time. 

Often these systems w i l l  be a lso  r e a l  and constant (= stationary or 

time-invariant) . We leave the precise defini t ion of these terms i n  

the context of Definition (1.3) t o  the  reader (consult KALMAN, FALB, 

o r  ARBIB E1969, Chapter 11  as needed) and proceed t o  make some ad hoc 

definitions without detailed explanation. 

The following conventions w i l l  remain i n  force thkoughout the 

lectures whenever the ,-inear case i s  discussed: 

. . . . m 
S2= all continuous functions g R which Anish  out- - - 
Y 

side a f i n i t e  interval.  

(1.10) Discrete-time. T = _Z, - K = fixed f i e l d  (arbitrary),  
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U = p, X = I?, Y = K*, il = a l l  f'unctions 

Z - + which a r e  zero for  a l l  but a f i n i t e  number of - 
t h e i r  arguments . 

Now we have, f ina l ly ,  

(1.11) DEFINITION. A real ,  continuous -t ime, n-dimensional, l inear  

dynamical system C i s  a t r i p l e  of continuous matrix functions of - 
time (F(*), G(*) ,  H ( - ) )  where - 

F )  : I1 -, {n X n matrices over g) - - 
G( 0 )  : g - -3 {n X m matrices over g), - 

H( .) : R -+ {p X n matrices over R). - - - 

These naps determine the equations of motion of C i n  the folllowine, 

manner : 

where t E = R, x E gn, - ~ ( 5 )  EFf, an& y( t )  E $. - - - 

To check t h a t  (1.12) indeed malies C i n to  a well-defined dynamical 

system i n  the  sense of Definition (1.3)~ it i s  necessary t o  r e c a l l  the  

basic f ac t s  about f i n i t e  systems of ordinary l inea r  d i f f e ren t i a l  equations 

with continuous coefficients.  Define the map 

cP (t, 2): . R X R + {n X n matrices over 5) F - - - - - 

t o  be the family of  n X n matrix solutions of the  l inear  d i f f e ren t i a l  
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e ion 

subject t o  the  i n i t i a l  condition 

( T  T) = I = unit matrix, T € g. - 

Then % i s  of c lass  c1 i n  both arguments. It i s  called the 

t rans i t ion  matrix of ( the system C whose "infinitesimal' t r a n s i t  ion 

matrix i s )  F(*) .  From t h i s  standard resul t  we get eas i ly  also the  

fact  tha t  the t rans i t ion  map of C i s  expl ic i t ly  given by , 

t (1.13) cp(t; T, x, a) = $(t, r )x  + $ b(t, S)G(S)GI (s) @b(t, s)ds 
T 

while the readout map i s  given by 

It i s  instructive t o  ver i fy  tha t  cp indeed depends only on the equiva- 

lence class  of cuts which agree on [ r ,  t ] .  

I n  view of the  c l a s s i ca l  terminology "linear d i f f e ren t i a l  equa- 

t ions  with constant coefficients1; we introduce the nonstandard 

(1.15) DEFINITION. A real,  continuous-time, f inite-dimensional 
\ 

l inear  dynamical system C = (F(*), G(-) ,  H(*) )  i s  cal led constant 

if'f a l l  three matrix f'unctions are  constaht. 

I n  s t r i c t  analogy with (1.15)) we say: 

(1.16) DEFINITION. A dj-scret e-time, f inite-dimensional, linear, 

constant dynamical system Z over K i s  a t r i p l e  (F, G, H) of - 
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n X'n, n Xm, p X n matrices over the field K. These maps deter- 

mine the equations of motion of i in the following manner: 

where 

In the sequel, we shall use the notations (F, Gy -) or 

F, -, H) to denote systems possessing certain properties which 

are true for any H or G. 

Finally, we adopt the following convention, which is already 

implicit in the preceding discussion: 

(1.18) DEFINITION. The dimension - n of a dynamical system - 
Z is equal to the. dimension of , Xz as a vector space. 



2. STANDARDIZATION OF DEFINITIONS AND "CLASSICAI/'RESULTS 

I n  t h i s  section, we s h a l l  be mainly interested i n  f in i t e -  

dimensional l inear  dynamical systems, although the f i r s t  two 

defini t ions w i l l  be quite general. 

Let C be an arb i t ra ry  dynamical system as  defined i n  

Section 1. We assume the following s l ight ly  special property: 

There ex i s t s  a s t a t e  9 and an input & such tha t  

cp(t; T, X3C, &) = X3C for  a11 t, T E T and t > - r. - 

For simplicity, we write X3C and CM a s  0. (When X 

and have additive structure, 0 w i l l  have the usual mean- 

ing.) The next two definitions refer  t o  dynamical systems 

with t h i s  extra  property. 

(2.1) § DEFINITION. An event (z, x) i s  controllable i f f .  

there exis t s  a t E T and an w E R (both t and co may depend - - 

In words: an event i s  coatrollable i f f  it can be transferre 

* t o  0 i n  f i n i t e  time by an appropriate choice of the input function 

co. Think of the  path from (7, x) t o  ( t ,  0) as the graph of a 

function defined over [ T, t 1. 
--------------- 

6 
The technical wor'd i f f  means i f  and only i f .  
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Consider now a reflection of this graph about T. This . 

suggests a new definition which is a kind of "adjointtbf the 

definition of controllability: 

(2.2) DEFINITION. An event (T, x) is reachable iff there 

is an s E T and an w € R (both s and 03 may depend on - - - 
(T, x) ) such that 

We emphasize: controllability and reachability are entirely 

different concepts. A strzking example of this fact is encountered 

below in Proposition (4.26). 

We shall now review briefly some well-known criteria for and 

relations'between reachability and control.lability in linear systems. 

( 2 -3 )  PROPOSITION. In a real,continuo~~s-time, finite-dinensional, 

linear dynamical system - Z = (F(* ), G(* ), - ) , an event (T, x) is 
A 

(a) reachable if and only if x E range ~(s, T) for - 
some s E R, s < T, where - - - 

(b) controllable if an only if x € range W(T, t) for - 
some t E R, t > T, where - - - 

The original proof of (b) is in KALMAN [1960b]; both cases 

are treated in detail in KALMAN, FALB, aad LWIB [ 1969, Chzpter 2, 
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Section 21. Note t h a t  i f  G(*) i s  ident ica l ly  zero on (- w, T) 

we cannot have reachability, and i f  G ( = )  i s  ident ical ly  - 

zero on (7 ,  f 0 0 )  we cannot have control labi l i ty .  

For a constant system, the integrals  above depend only on 

the  difference of the  l imits ;  hence, i n  par t icular  

w( r ,  t )  = t ( 2 ~  - t, r ) .  

So we have 

(2.4) PROPOSITION. I n  a real, continuous-tbe, finite-dimensional, 

l inear ,  constant d ~ ~ n a n i c a l  system an e v a  (7, x) i s  reachable 

for  a l l  T if and only i f  it i s  reschable fo r  one r an evsnt 

i s  reachable if and only i f  it i s  con-brollable. 

From (2.3) one can obtain i n  a straightforward fashion a lso  

the  following much stronger r e su l t  : 

(2.5) THEORXM. I n  a real, cont inuous-t ime, n-dimensional, 

l inear,  constant dynamical system C = (F, G, -) a s t a t e  x 
. .- 

i s  reachable (or, equivalently, controllable) a t  - a x  r E R - 
if  and onlv if  

x E span (G, FG, ... ) c $; 

be inter$reted a's the vector space generated by the columns of 

these matrices.) 
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A proof o f  (2.5) may be found i n  KALMAN, HO, and TTARENDRA 
', , 

119631 and i n  WILMAN, FALB, and ARBIB [1969, Chapter 2, Section 

31. A trivial but noteworthy consequence i s  the fac t  tha t  the 

defini t ion of reachable s t a t e s  of C i s  "coardinate- free" : 

COROmY. The s e t  of reachable (or controllable) 

s t a t e s  of C i n  Theorem (2.5) i s  a Subspace of the r e a l  vector 

space t h e  s t a t e  space of 

Very of ten  the at tent ion t o  individual s t a t e s  i s  urmecessary 

If and therefore mny authors prefer t o  use the terminology C i s  

completely reachable at T" for  "every event (7, x), T = fixed, 

It x E XE i s  reachable", o r  H completely reachable" fo r  "every 

event i n  Z i s  reachable", etc. Thus (2.5), together with the 

Cayley-Hamilton theorem, implies the 

(2.7) BASIC LEMMA. A real, continuous-t ime, n-dimensional, 

l inear ,  constant dynamical system C = (F, G, -) i s  completely - 
reachable i f  a n  only i f  

rank (G, FG, . . ., P I G )  = n. 

Condition (2.8) i s  very we l l -k rm;  it or  equivalent forms of 

it have been discovered, expl ic i t ly  used, or implici t ly  assumed by 

many authors. A t r i v i a l l y  equivalent form of (2.7) i s  given by 

(2.9) COROLLARY 1. A constant system C = (F, G, -) + -  

completely reachable i f  and only i f  the s ~ 3 l l e s t  F-invariant 

subspace of Xz containing ( a l l  colunn vectors of) G - i s  3 
i t s e l f .  
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A useful variant of the last fact is given by 

(2.10) COROLLARY 2. (w. Hahn) A constant system C = (F, G, -) 

is completely reachable if and only if there is no nonzero eigen- 

vector of F which is orthogonal to (every column vector of) G. 

Finally, let us note that, far from being a technical condi- 

tion, (2-5) has a direct system-theoretic interpretation, as 

follows : 

(2.11) PROPOSITION. ,me state space % of a real, continuous- 

time, n-dimensional, linear, constant dynamical system C = (I?, G, -) 

may be written as a direct sum 

which induces a decomposition of the equations of motion as (obvious 

notat ions) 

The aubsyst em is comljletelv reachable. Hence 

a state x = (xl, x2) E 5 is reachable if and only if x 2 = 0. 

PROOF. We define X1 to be the set of reachable states 

of 2; b y  (2'.5) this is an F-invariant subspace of XC. Hence, by 

finite-dimensionality, X1 is a direct summand in . By construc- 

.tion, every state in X1 is reachable, and (every column vector of) 
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G belongs t o  X1. The F-invariance of X implies tha t  1 

FU = 0, which implies the asserted form of the  equations of 

motion. 

(2.13) REWiRK. Note tha t  X2 i s  not in t r ins i ca l ly  defined 

(it depends on an arb i t ra ry  choice i n  completing the direct  sum). 

Hence t o  say tha t  "(0, x2) i s  an unreachable (or uncontrollable) 

s t a t e  i f  x2 0" i s  an. abuse of language. More precisely: the 

se t  of a l l  reachable (or  controllable) s t a t e s  has the  s tructure of 

a vector space, b& the  se t  of aJ-1 unreachable (or uncon'r,rollable) 

s t a t e s  does not have such structure. This f ac t  i s  important t o  

bear i n  mind for  the algebraic development which follows a f t e r  

t h i s  section and a lso  i n  the .def in i t ion  of observability and 

cons t ruc t ib i l i ty  beiow. I n  general, the direct  sum cannot be 

chosen i n  such a way tha t  F12 = 0. 

While condition (2.8) has been frequently used as  a technical 

requirement i n  the solution of various optimal control problems i n  

the  l a t e  1950's, it was only i n  1959-60 tha t  the re la t ion  between 

(2.8) and system theoret ic  questions w a s  c l a r i f i ed  by KADKN [ l g a b - c ]  

via Definition (2.2) and Propositions (2.5) and (2.11). (see Section 

11 for  fur ther  detai ls .  ) I n  other words, without the preceding 

discussion the use of (2.8) may appear t o  be a r t i f i c i a l ,  but i n  f ac t  

it i s  not, at l eas t  i n  problems i n  which control ent- because, 

by (2.12) control problems s ta ted  for  are  nontr ivial  only with 

respect t o  the in t r ins i c  subspace . 
x1 
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The hypothesis "constant" i s  by no means essent ial  for  

Proposition (2.11), but we must forego further comments here. 

For l a t e r  purposes, we s t a t e  some fac t s  here for  discrete- 

t h e ,  constant l inea r  systems analogous t o  those already developed 

fo r  t h e i r  continuous-time counterparts. The proofs a re  straight- 

forward and therefore omitted (or given la ter ,  for  i l l u s t r a t i v e  

purposes) . 
- (2.14) PROPOSITION. A s t a t e  x of a real, discrete-time, 

n-dimensional, l inear,  constant dyxamical system Z = (I?, G, -) 

i s  reachable if and only i f  

(2.15) x €  span(G, FG, ..., F"-lG). 

Thus such a system i s  completely reachable i f  and only i f  (2.8) 

holds. - 
PROPOSITION. A s t a t e  x of the system C described 

i n  Proposition (2.14) i s  controllable i f  and only i f  

x E span (F-'G, . . . , F-"G) , 

where 
P 

-k 
F G P I X :  $X = giy gi = column v e c t ~ r  of GI. 

(2.18) PROPOSITION. I n  a real, discrete-time, finite-dimensional, 

linear, constant dynamical system C = (F, G, -) a reachable s t a t e  

i s  always controllable and the converse is always t rue  whenever 

det F f 0, 



Note also that Propositions (2.11) and its proof continue 

It to be correct, without any modification, when continuous-time" 

is replaced by "discrete-time". 

Now we turn to a discussion of observability. 

The original definition of observability by KALMCLNr [1960b, 

Definition (5.23)] was concocted in such a way as to take advan- 

tage of vector-space duality. The conceptual problems surround- 

ing duality are easy to handle in the linear case but are still 

by no means fuLly understood in the nonlinear case (see Section 

10). In order to get at the main facts quickly, we shall consider 

here only the linear case and even then we shall use the-under- 

lying idea of vector-space duality in a rather ad-hoc fashion. 

The reader wishing to do so can easily turn our rernarks into a 

strictly dual treatment of facts (2.1) -(2.12) with the aid of 

the setup intrduced in Section 10. 

(2.19) DEFIPKITION. An event (T, x) in a real, continuous- 

time, finite-dimensional, linear dynamical system C = (F( *), -, H(*)) 
is unobservable iff 

~(s) $(s, T)X = 0 for all s E [ T, m). 

(2.20) DEFINITION. With respect to the same system, an event 

(T, x) is unconstructible* iff 

*In the older literature, starting with KALM&N [1960b, 
Definition (5.23) 1, it is - this concept which is called "observability". 
By hindsight, the present choice of words seems to be more natural 
to the writer. 
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~(rr)$(u, T)X = 0 for a l l  u E (- m, r ] .  

The moti-vation for  the first def ic i t ion  i s  obvious: the 

1s occurrence" of an unobservable event cannot be detected by look- 

ing at the  output of the system a f t e r  time T. (The defini t ion 

subsumes w = 0, but t h i s  i s  no loss  of generality because of 

l ineari ty .)  The motivation for  the  second defini t ion i s  l e s s  

obvious but i s  i n  f ac t  strongly swgested by s t a t i s t i c a l  f i l t e r i n g  

theory (see Section 10). I n  any case, Definition (2.21) comple- 

ments Definition (2.20) i n  exactly the  same way as Definition (2.1) 

complements Definition (2.2) . 
From these definitions, it is  very easy t o  deduce the  follow- 

ing c r i t e r i a :  

(2.21) PROPOSITION. I n  a real, continuous-time, f inite-dimensional, 

l inear  dynamical system C = (F(*), -, H(*)) an event (T, x) - i s  

(a) unobservable i f  and anly i f  x E kernel 2 ( ~ ,  t )  

fo r  a l l  t E g, t t r, where - 

(b) unconstructible i f  and only i f  x € kernel ~ ( s ,  T) 

f o r  a l l  s E g, s < T, where - 
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PROOF. Part (a) follows immediately from the observation: 

x E kernel ~(r, t) @ H(s)@~(s, r)x = 0 for all s E [T, tl. Part 

(b) follows by an analogous argument. ' 

REMARK. Let us compare this result with Proposition (2.3), 

and let us indulge (only temporarily) in abusas of language of the 

following sort :* 

(T, x) = unreachable <* x E kernel $(T, t) 

for all t > T 

and 

(T, x) = observable x € range ;(T, t) 

for some t > T. 

From these relations we can easily deduce the so-called "duality 

rules"; that is, problems involving observability (or constructibil- 

ity) are converted into problems involving reachability (or control- 

lability) in a suitably defined dual system. See KAINAN, FUB, 

and ARBIB [ 1969, Chapter 2, Proposition (6.12) 1 and the broader 

discussion in Section 10. 

We - will say, by slight abuse of language, that a system is 

completely observable whenever 0 is the only unobservable state. 

Thus the Basic Lemma (2.7) "dualizes" to the 

(2.23) PROPOSITION. A real, continuous-time or discrete-time, 

n-dimensional, linear, constant dynamical system C = (F, - , H) 
--------------- 

*All this would be s-t;rictly correct if we agreed to replace 
11 direct sum" in Proposition (2.11) and its counterpart (2.25) by 
"orthogonal.direct sun"; b ~ t  this would be an arbitrary convention 
which, while convenieat, hzs no natural system-theoretic justifica- 
tion. ,Reread ~erna+%. '(2.. 13) . 
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is completely observable if and only if 

(2.24) rank (a', F'H', ..., (F*)"-%') = n. 

By duality, com2lete constructibility in a continuous-time 

system is equivalent to observability; in a discrete-time system 

this is not true in general but it is true when det F # 0. 
It is easy to see also that (2.11) "dualizes" to: 

(2.25) PROPOSITION. The state space X of a real, continuous- 

time or discrete-t ime. , n-dimensional, linear, constant dynamical 

system C = (F, -, H) may be writter, as a. direct siun - 

and the equations of C are decomposed correspondingly as 

PROOF. Proceed dually to the proof of Froposition (2.11), 

beginning with the definiticn of X1 as the set of all - unobservable 

states of C. 

Combining Propositions (2.11) and (2.25) gives Theorem C as in 

K .  [ 1962 I . 
tt This completes our survey cf the classical" results related 
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to reachability, controllability, observability, and 

constructibility . 
The remaining lectures will be concerned exclusively with 

discrete-time systems. The main motivation for the succeeding 

developments will be the algebraic criteria (2.8) and (2.24) 

as well as a deeper exd.nation of Theorems C and D of the 

Introduction. 



3. DEFINITION OF STATES VIA NERODE EQUIVALENCE CLASSES 

A c la s s i ca l  dynamical system i s  essent ial ly  the act ion of the 

time se t  T (= r ea l s )  .on the s t a t e s  X. In  other words, the 

s t a t e s  a r e  acted on by -an abel ian group, namely (R + usual ' - 
def in i t ion  of addition).  This i s  a t r i v i a l  fact, but it has deep 

consequences. A (modern) dynamical system i s  the action of the 

inputs S l  on X; i n  exact analogy with the c lass ica l  case, t o  

the abelian structure on T there corresponds an (associative 

but noncommutative) semigroup structure on St. The idea t h a t  

always admits such a s tructure was apparently overlooked u n t i l  

the l a t e  1950's when it became fashionable i n  automata theory 

(school of SCHUTZENBERGER). This seens t o  be the "right9' way 

of t rans la t ing  the in tu i t ive  notion of dynamics in to  mthematics, 

and it w i l l  be fundamental i n  our succeeding investigations. 

1% i s  convenient t o  assume fro= now oaf u n t i l  the end of 

these lectures, t ha t  

(3.1) T = time s e t  = - - Z = additive (ordered) group of 

integers. 

Since we s h a l l  be only interested i n  constant systems from 

here on, we sha l l  adopt the following normalization convention:* 

*In the  d i s c w d t i m e  nonconstant case, we would have t o  deal 
with Z copies of St, each normalized with respect t o  a different  
par t icu lar  value of T E Z. - - 
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No element of R i s  defined fo r  t > T = 0. 

I n  view of (3.2)) we can define the "lengthn Icul of cu by 

. . - .  

= max C-t E Z: - cu i s  n ~ t  defined for-any s < t ) .  

Before defining the semigroup on S2, we introduce another 

f'undamental notion of dynamics: the  ( l e f t )  s h i f t  operator ub, 

defined fo r  a l l  q > 0 i n  Z_ by - - 

Note t h a t  the def in i t ion  of i s  compatible with the normaliza- 

t i o n  (3.2). 

If Ju n Jut = empty fo r  o, cut E R, we define the Join 

of cu and cut as the  function 

When Q has an additive structure, then we replace u: , cut by cu + cut .  

DEFINITION. There i s  an associative operation 

0 :  n X Q + R, ca l led  concatenation, defined by 
. . 

Note that, by (3.2) through (3.4)) o i s  well defined. 

Note a l so  t h a t  the  asserted existence of concatenation r e s t s  

on the fact  t ha t  Q' i s  made up of functions defined over f i n i t e  

intervals  i n  T. We might express the  content of (3.5) a l so  as: 

R i s  a semigroup with va 
. - .-.---I--- 
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In view of (3.5), it is natural to use an abbreviated notation* 

also for the transition f'unction, as follows: 

- Now we come to an important nonclassical concept in dynmical 

systems, whose evolution was strongly influenced by problems in 

communications and automata theory: a discrete-time constant 

input/output map 

We interpret this map as follows: y(1) is the output of some 

system C (say, a digital computer) when X is subjected to 

the (finite) input sequence a, assuming that C is some fixed 

initial equilibrium state before the application of w. This 

definition automatically incorporates the notions of "discrete- 

time" as well as "causal" or "dynamics" (the latter because 

y(t) is not defined for t < 1). However, (3.7) does not 

clearly imply "constancyt1 (implicitly, however, this is clear from 

the normalization assumption (3.2) on a). To make the definition 

more forceful, we extend f to the map 

- 
f: R + r = Y X Y , . . (infinite cartesian product) 
: m w (f(4, f(q-y), * * =  = (~(11, ~(21,.  * = *  ) *  

- 
Interpretation: f gives the output sequence y = (y(l), y(2), ... 

of the system I= after t = 0 resulting from the application of an 

--------------- 
*Observe that xow is the strict analog of the notation xt 

customary in topological dynamics. The action of w on x satis- 
fies XO(UOV) = (XU) ov in view of (1.5) 
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input w which stops at  t = 0. 

This defini t ion expresses causality more forcefully and 

incorporates copstanc:r, provided we define the  ( l e f t )  sh i f t  

operator u on I' so as t o  be compatible with (3.3). So, 

for  any T > - 0, T € Z, l e t  - - - 

Note: the operator uQ llappendsl' an undefined term at  0, the 

operator c " l d i s ~ a r d s ~ ~  the  term ~ (1) .  r 
Now, droppf ng the bar over f, we adopt 

DEFINITION. A discrete-time, constant input/output map - 

(of some underlying dynamical syst2rn C) i s  any map f such tha t  

the following diagram 

i s  commut&tive. We s q  tha t  -- f i s  l inear  i f f  it i s  a K-vector -- --- ------- 

space 3on3mor-o' LI i -sm. - - -----&-.-A 
It w i l l  be convenient t o  regard (3.10) as the external 

, definition of a dynemica1 system, i n  contrast t o  the internal  

defini t ion s e t  up i n  Section 1. 

Intuitively,  we should think of f a s  a highly idealized 

Kina of experimental data; namely, f incorporates a l l  possible 

information tha t  could be gained by subjecting the  underlying 
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system to experiments in which only input/outgut data is avail- 

able. This point of view is related to experimental physics the 

same way as the classical notion of a dynamlcal system is related 

-60 Newtonian (axiomatic) physics. 

The basic question which motivates much of what will follow 

can now be formulated as follows: 

(3.11) PROBLFJ4 OF REALIZATION. Given only the knowledge of 

f (but of course also of 3, - i2, and I?) how can we discover, 

in a mathematically consistent, rigorous, and natural my, the 

properties of the system C which is supposed to underlie the 

given input/output r r q  f? 

This suggests immediately the following fundamental concept: 

(3.12) DEFINITION. A fixed dynamical system C (internal 

definition, as in Section 1) is a realization of a fixed input/ 

output map iff f = fz , that is, fo is identical with fo - 0 
0 

the input/output map of Zo. 

In view of the notations of Section 1 plus the special con- 

vention (3.6), the explicit form of the realization condition is 

simply that 

for all u, SZ. The symbol * stands for an arbitrary equili- 

brium state in which Lo remins, by definition, until the 

application of w. (~ater we simply take * to be 0.) 
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To solve the realization problem, the critical step is to 

induce a definition of X (of some zo) from the given foe 

It is rather surprising that this step turns out to be trivial, 

on the abstract level. (on the concrete level, however, there are 

many unsolved problems in actually computing what X is. In 

Section 8, we shall solve this problem, too, but only in the 

linear case.) The essential idea seems to have been published 

first by NERODE [195 81 : 

DEFINITION. Make the concatenation semigroup $2 - into 

a monoid by adjoining a neutral elemeat (which is the nowhere- 

defined function on ) Then cu = - - -f 
U 1  (read: u is Nerode 

equivalent to ut with respect to f) - iff 

f(cu0.v) = f(utov) for all v E n. 

There are IT- intuitive, physical, historical, and technical 

reasons (which are scattered throughout the literature and concea-. 

trated especially strongly in KALMCLN, FAB, and ARBIB [1969]) for 

using this as the 

(3.15) MAIN DEFINITION. The set of equivalence classes under 

= denoted as Xf = - { (u) f: u E O), is the state set of the -fJ 

input/output map f l 

Let us veri* immediately that (3.19) makes mathematical 

sense: 
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(3.16) - PROPOSITION. For each linear,  constant input/output maE 

there exis t s  a dynamical system 

(a) Zf rea l izes  f ;  

Cf .. such tha t  

PROOF. We show how t o  induce Cf, given f. We 

d2fine the s t a t e  se t  of C by (b) . Further, we define the  
f 

t rans i t ion  f'mction of C by 
f 

A We must check tha t  on the  l e f t  of = i s  well defined (note 

two different uses of ! )  t ha t  is, independent of the repre- 

sentation of x as - (a) f. This follows t r i v i a l l y  from (3 .I&). 

Now we define the readout 12ap of Cf by 

Again, t h i s  map i s  well defined since we can take V =. PI.. as a 

special case i n  (3.14). Then 

and the  real izat ion condition (3.6) i s  verified. Hence claim (a) 

. i s  correct. 

(3.19) COMMENTS. In automata theory, Cf i s  known as  the  

reduced form of .any system which real izes  f .  Clearly, any two 



reduced forms are isomorphic, in the set-theoretic sense, since 

the set Xf is intrinsically defined by f. (This observation 

is a weak version of Theorem D of the Introduction; here "unique- 

ness" means "moiiulo a pernutation of the labels of eleme~ts in 

the set Xf".) Eiotice also that Ef is comgletely reachable 

since, by Definition (3.15 ,, every eLement x = of Xf 

is reac-hbie via any element cut - in the Nerode equivalence class 

(u)~.  As to observability of Cp see Section 10. 
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We are  now ready t o  embark on the  main topics of these lectures.  

It i s  assumed tha t  the reader i s  conversant with modern algebra (espe- 

c ia l ly :  abelian groups, commutative rings, f ie lds ,  modules, the r ing 

of polynomials i n  one variabletand the  theory of elementary divisors),  

on the  l e v e l  of, say, VAN DER WAERDEN, LANG 11965 1, W [ 1965 1 o r  

ZARISKt and SAMUEL [1958, Vol. 1 1 .  The material covered from here 

on dates from 1965 or l a t e r .  

Standing assumptions u n t i l  Section 10: 

A l l  systems C = (F, G, H) are discrete-time, l inear,  

constant, defined over a fixed f i e l d  K (but not necessarily 

f inite-dimensional) . 

Our immediate objective i s  t o  provide the  setup and proof for  the  

(4.2) FCTNDAMENTAL THEOREM OF LINEAR SYSTEM THEORY. The natural 

s t a t e  se t  Xi associated with a discrete-time, linear, .constant input- 

output map f over a fixed f i e l d  K admits the structure of a f i n i t e l y  

generated module over the r ing  ~ [ z ]  of polynomials (k i th  indeterminate 

z and coeff icients  i n  K) . 

(4-3) COMMENTS. Since the r ing  K[Z] w i l l  be seen t o  be related 

to ' the  inputs t o  C, t h i s  resul t  has a superf icial  resemblance t o  the  

f ac t  tha t  i n  an arb i t ra ry  dy-namical system C the s t a t e  s e t  admits 

the  act ion of a semigroup, namely RC (see (3.6) and related footnote). 

It turns out, however, t ha t  t h i s  act ion of R on X, which re su l t s  

from combining the  concatenation product i n  R with the defini t ion of 
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s t a t e s  via Nerode equivalence, i s  incompatible with the additive 

structure of R [ KALMAN, 1967, Section 3 1 . Our theorem asser t s  the 

existence of an ent i re ly  different  kind of structure of X. This 

structure, tha t  of a K[ zl-module, i s  not just  a consequence of 

dynamics, but depends c r i t i c a l l y  on the additive structure on R 

and on the l inea r i ty  of f .  The relevant multiplication i s  not 

(noncommutative) concatenation but (commutative) convolution (because 

convolution i s  the natural product i n  K[z]) ; dynamics i s  thereby 

restated i n  such a way tha t  the tools  of commutative algebra become 

applicable. I n  a certain rather  defini te  sense (see a lso  Remark 

(4.30)), Theorem (4.2) expresses the algebraic content of the method 

of the Laplace transformation, especially a s  regards the practices 

developed i n  e l e c t r i c a l  engineering i n  the  U.S. during the 1950's. 

The proof of Theorem (4.2) consists i n  a long sequence of canoni- 

c a l  constructions and the verif icat ion tha t  everything i s  well defined 

and works a s  needed. 

I n  view of (4.1) and the conventions made i n  Section 1, R m y  

be viewed as  a K-vector space and w ( t )  = 0 for  almost a l l  t E Z_ - 
and a l l  cu E R. By convention (3.2 ), we have assumed also tha t  

~ ( t )  = 0 for a l l  t > 0. As a resul t ,  we have that :  

(a) R P [ z ]  a s  a K-vector space. Let us exhibit the isomor- 

phism expl ic i t ly  as  follows: 

By (3.2 ), the sum i n  (4.4) i s  always f in i t e .  The isomorphism 
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obviously preserves the  K-linear structure on R. I n  the sequel, we 

shall not distinguish sharply between w a s  a f'unction T + and 
. - 

co as an m-vector polynomial. 

(b) R is  a f ree  ~[zl-module with m penerators, tha t  is, 

i2 K ? [ ~ I  a lso  i n  the  K[zl-module sense. In  fact,  we define the 

action of K[z] on R by scalar multiplication as  

-: K[z] X R + R: (n, w) H a.w 

where 

(4.5) ( a .  € K[z], j = 1, ..., m). 
J 

m e  product of n with the components of the vector w i s  the  

product i n  ~ [ z ] .  W e  write the  scalar product on the l e f t ,  t o  avoid 

any confusion with notation (3.6 ) . It i s  easy t o  see tha t  the module 

axioms are verified; R i s  obviously free, with generatorsL- " 

position, 

( c )  i2 t he  action of the s h i f t  operator cR i s  represented 

by mult ipl icat ion by z. Thi-s, of course,. i s  the  mi-n reason-for 

introducing the isomorphism . *  (4.4) i n  the f i r s t  place. 
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- 1 (d) Each element of I' i s  a formal power ser ies  i n  z . In fact, 

(4.4) suggests viewing z' as an abstract representation of - t E Z; - 
hence we define 

By (3.8 ) and (4 .I), y ( t )  E KP fo r  each t > 1 and i s  zero, (or 

not defined) fo r  t < 1. I n  general the sum i s  +;aken over inf in i te ly  many 

nonzero terms; there i s  no question of convergence and the right-hand side 

of (4.7) i s  t o  be interpreted s t i c t l y  a9gebraically a s  a formal power 

series.  Since Y(Q) i s  always zero (see (3.8)), we can say also . 

tha t  

(e) r i s  isomorphic t o  the K-vector subspace of K ~ [ [ Z , - ~ I ]  

- 1 
(formal power ser ies  i n  z w i t h  coefficients i n  K ~ )  consisting 

of a l l  power ser ies  with 0 f i r s t  t e r ~ .  

The f i r s t  nontr ivial  construction i s  the following: 

( f )  r has t h e  structure of a ~ [ z ]  module, with scalar 

m u l t i ~ l i c a t i o n  defined as  

: ~ [ z ]  X I? 4 r: ('IT,. Y) H 8 - Y  = 'IT(G~)Y. 

This product may be interpreted as  the ordinary product of a power 

-1 ser ies  i n  z by a polynomial i n  z, .followed by the deletion of 

a l l  terms containing no. negative powers of z. The verification of 

the module axioms i s  straightforward. 
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(g) .f i s  a ~ [ z ]  homomorphism. This is an immediate conse- 
7 

quence of the fact  that  f = constant (see (3 . l~)) 'and that  multipli- 

cation by z corresponds t o ' t he  l e f t  sh i f t  operators on Q and I'. 

The Nerode equivalence classes of are isomorphic with 

G?/kernel f .  . This i s  an easy but highly nontrivial lemma, connecting 

Nerode equivalence with the module structure on R. The proof is  an 

immediate consequence of the formula 

I n  fact, by K-linearity of f, .(4;9) implies 
- 

f(0ov) = f(m1ov) for  a l l  v E Q 

if and only i f  

k f ( a  -0) = f(zk*ml) fo r  a l l  k > - - 0 i n  Z. - - 

The proof of Theorem (4.2) i s  now complete, since the l a s t  

l e m m a  identif ies X as defined by (3.15) with the K[ z] quotient 
f 

module Q/kernel f .  

We write elements of the l a t t e r  as ["If = m + kernel f ;  then 
.. .. 

it i s  clear that  Xf as a K[z]-moduie i s  generated by [ellp ...., [e,lf, 

since R i t s e l f  i s  generated by e l  . . . e (see (4.6)). Note also m 

th@t the scalar product i n  R/kernel f i s  

The l a s t  product abom (that i n  R) has already been defined i n  (4.5). 

The reader should verify direct ly that  (4.10) gives a well-defined 

scalar product. 
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(4.11) REMARK. There i s  a s t r i c t  duality i n  the setup used t o  

define f .  From the point of view of homological algebra [MAC LANE 

19631, t h i s  dual i ty  looks a s  follows. Since every f ree  module i s  

projective, the natural  map 

exhibits X a s  the image of a projective module. On the. other 
f - 

hand, there i s  a bi ject ion between the se t  Xf and the se t  

- 
Zf i s  c lear ly a K[ 21-subnodule of I' (with zef(m) = f ( z -a ) ) ,  

and so X and zf' 
f 

a re  isomorphic also a s  K[ cl-modules. It i s  

known tha t  I? i s  an inject ive module [MAC IdWE 1963, page 95, 

Exercise 21 So the natural  m a 2  Xf -t Zf: [elf H f(m) exhibits 

Xf a s  a submodule of an inject ive ~ o d u l e .  This f ac t  i s  basic i n  the 

construction of the "transfer f'unctiontl associated with f (section 7), 

but its fill implications a re  not yet understood a t  present. 

There i s  an easy counterpart of Theorem (4.2) which concerns a 

dynamical systen given i n  "internal" form: 

(4.12) PROPOSITION. The s t a t e  se t  X of every discrete-time, 

finite-dimensional, l inear,  constant dynamical system C = (F, G, -) 

admits the structure of a K[z]-module. 

PROOF. By def ini t ion (see (1.10)), X = K" i s  already a 

K-vector space. We make it in to  a K[z]-module by defining 
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(4.14) COMMENT. The construction used in the proof of (4.12) is 

the classical tridrof studying the properties of a fixed linear map 

F: + $1 via the K[ zl-module structure that F induces on 

by (4.13) . In view of the canonical construction of C provided by 
. . 

f 

Proposition (3.16)) the state set X can be treated as a K[z]- 

module irrespective as to whether X is constructed from f (X = xf) 

or given a priori as part of the specification of L (X = x~). Thus 

the K[z]-module structure on X is a nice way of uniting the "external" 

and the "internalI1 definitions of a dynamical system. Henceforth we 

shall talk about a (discrete-time, linear, constant dynamical) system 

C some~~hat imprecisely via properties of its associated K[ z ]  -module 5. 

We shall now give some examples of using module-theoretic language 

to express standard facts encountered before. 

(4.15) PROPOSITION. If X is the state-module of C, the map 

Fz is given by X -> X: x H z - x .  - 

PROOF. This is obvious from (4.13) if X = 3. If X = Xf = 3 , 
. f 

then we find that, by (l.l7), 

since x(0) results from input I, x(1) results from input .z*S + ~ ( 0 )  
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So the  assert ion i s  again verified. 

Now we can replace Proposition (2.14) by the much more elegant 

(4.16) PROPOSITION. A system C = (F, G, -) i s  completely reachable 

if and only i f  the  columris of -G generate 3. 

PROOF. The claim i s  tha t  complete reachability i s  equiva- 

l en t  t o  the f a c t  tha t  every element x E % . i s  expressible a s  

I n  view of (4.15), t h i s  i s  the same a s  requiring tha t  x be expressible 

t h i s  l a s t  condition i s  equivalent t o  complete reachability by (2.14). 

(4.17) CORO-Y. The reachable s ta tes  of C are precisely 

those of the submodule of 5 generated.by (the columns of) G. 

REMARK. The statement tha t  "C i s  not completely reachable" 

simply means t h a t  X i s  - not generated by those vectors which make up 

the matrix G i n  the specification of the input side of the system C. 
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It does not follow tha t  X cannot be f i n i t e l y  generated by some other 

vectors. I n  fact,  t o  avoid unnecessary generality, we sha l l  henceforth 

assume tha t  

i s  always f i n i t e l y  generated over 

From the  system-theoretic point of view, the  case when we need 

in f in i t e ly  many generators, t ha t  is, in f in i t e ly  many input channels, 

seems rather  bizzare at  present. 

(4.19) PRQPOSITION. The system Xf i s  completely reachable. 

PROOF. Obvious from the notation: a s t a t e  x = [ Elf 

i s  reached by 5 E R. 

(4.20) PROPOSITION. The system Xf i s  completely observable. 

PROOF. Obvious from Lemma (h) above: ~ ( [ m ]  f )  = f (u) = 0 

i f f  m E [ O I f ,  which says tha t  the only unobservable s t a t e  of Xf 

is  0 E X f r  

Let us generalize t'no l a s t  resu l t  t o  obtain a m0dLl.e-theoretic c r i t e r i ~ n  

fo r  com2lete observability. There a re  two technically different  ways of 

doing th i s .  The first depends on the observation tha t  the  "dualt1 of a 

submodule (see Ccrollary (4.17)) i s  a quotient module. The second defines 

observability via the  "dual1' system (FI ,  Ht, -) associated with (F, -, H). 

Consider a dynamical system C = (F,. -, H) and the corresponding 

K[ 21-module 3 and K-homomorphism H: % -t Y = K'. We can extend H 
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t o  a K[z]-homomorphism H (look back a t  (2.8)) by set t ing 

From Definition (2.19) we see tha t  no nonzero element of the quotient 

module q k e r n e l  i s  unobservable. Hence, by abuse of language, we 

can say tha t  %/kernel Ti i s  the module of observable s ta tes  of Z. 

Thus we arr ive a t  p h a s i n g  the counterparts of (4.16-17) i n  the follow- 

ing language: 

(4.21) PROPOSITION. A system C = (F, - ,  H) i s  completely observable 

if anl only if the quotient module %/kernel E i s  isomorphic with 3. 

(4.22) COROLLARY. The observable s ta tes  of C are t o  be identified. 

w i t h  the  elements of the quotient module %/kernel E. 

(4.23) TERMINOLOGY. The preceding considerations suggest viewilng 

a system C as essent ial ly the same "thing" as a module X. S t r i c t ly  

speaking, however, knowing C = (F, G, H) gives us not only 3 = $ 
(see (4.13)) but a l so  a quotiant module (over kernel E) of a sub- 

module (that generated by G )  of %, tha t  i s  

If " 5 we say tha t  5 i s  canonical <re la t ive  t o  the given Gy H). 

To be more precise, l e t  us observe the following stronger version 

of (4.19-20): 
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(4.24) CORRESPoNDE3lCETHEOFZ31. There isabi jec t ivecorrespondence  

between K[z]-homomorphisms f: 0 and the  equivalence class  of 

completely reachable and completely observable systems modulo a 

basis  change i n  5. 
Detailed discussion of t h i s  resul t  i s  postponed u n t i l  

Section 7. 

A s t r i c t e r  observation of the "duality principlet '  leads t o  

(4.25) DEFINITION. The K-linear dual of C = (F, G, H) - i s  

C* = (F', HI,  G I )  ( 1 = matrix transpositton). The s t a t e s  of 

C* a re  called costates of C. 

The following f a c t  i s  an imedia te  consequence of t h i s  definition: 

(4.26) PROPOSITION. The s t a t e  se t  %* - of Z* may be given the 

structure of ~ [z - ' ]  module, as follows: ( i )  as a vector spece X2, 
i s  the dual of 5 regarded as a K-vector space, ( i i )  the  scalar 

product i n  * i s  defined by 

(4.26~) REMARK. We cannot define Xz* as Honk[ zl  (3, ~ [ z ] )  equal t o  

K[z]-linear dual of , because every-torsion module M over an integral  

domain D has a t r i v i a l  D-dual. However, the reader can verify (using 

the ideas t o  be developed i n  Section 6) tha t  defined above i s  iso- 

morphic with HornK[ (3, K( z) /K[ z 1 ) . See BOURBAKI [Alghbre, Chapter 7 
21 . 

(2e e'd.), Section 4, No. 81. 
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Now we verify easi ly the follo-+ring dual statements of (4.16-17): 

(4.2'7) PROPOSITION. A system C = (F, -, H) i s  completely observable 

if and only i f HI generates %*. 

(4.28) COROLLARY. The observable COstates of C* a re  precisely 

the reachable s t a t e s  of C*, t ha t  is, those of the  submodule of 

%* generated bx HI . 
We have eliminated the abuse of languzge incurred by talking 

about t'observzble s tatest '  tbzough introduction of the  new notion of 

"observable COstatesl'. The full explication of why t h i s  i s  necessary 

(as well a s  natural) i s  postponed u n t i l  Section 10. 

The preceding simple f ac t s  depend only on the notion of a module 

and are immediate once we recognize the f ac t  tha t  F may be eliminated 

from statements such a s  (2.8) by passing t o  the b d u l e  induced by F 

v ia  (4.13) . But module theory yields many other, l e s s  obvious resul t s  

as well, which derive mainly from the f ac t  tha t  ~ [ z ]  i s  a principal- 

idea l  domain. 

We recall:  an element m of an R-module M (R = arbi t ra ry  

commutative ring) has torsion iff there i s  a r E R such tha t  

r a m  = 0. If t h i s  i s  not the case, m i s  free. Similarly, M i s  

said t o  be a torsion module i f f  every element of M has torsion. 

M i s  a free module i f  no nonzero element has torsion. I f  L C M  

i s  any subset of K, the  annihilator % of L i s  the  se t  

% = (r: r-I  = 0 fo r  a l l  I E L); 

it follows immediately tha t  AL i s  an idea l  i n  R. Note a l so  tha t  
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the statement "M is a torsion mo6uleV does not imply in general 

that % is nontrivial, that is, # 0 (~ounterexample: take 

an M which is not finitely generated.) 

Coupling these notions with the special fact that, for us, 

R = K[z], we get a number of interesting system-theoretic results: 

(4.29) PRORISITION. C is finite-dimensional if and only if % 
is a torsion K[z]-module. 

COROLLkUY. If 3 is free, C is infinite dimensional. 

PROOF. We recall that "C = finite-dimensional" is defined 

to be '3 = finite-dimensional as a K-vector space"; See (1.18). 

Sufficiency. By assumption X is-finitely generated 

by, say, q nonzero elements . . . x of XL (which are not. 
9 

necessarilg the columiis of G) . Hence 

Since ~[z] is a principal-ideal domain, each of the Ax is a princi- 
3 

pal ideal, Say, Y .K[Zl d t h  Y. E Kf.1. If is a torsion module, J J 
then degy = n  > O  for all j =1, ..., q. For otherwise y 

3 j 

is either zero (and then x is free, which is a contradiction) or 
ii 

a unit which implies x = 0- contr y to assumption. Hence we can 
j 

replace each expression 
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by the simpler. one 

which shows that 5, as a K-module, is generated by the finite set 

Necessity. Let qF be the minimal polynomial of the map 

F: x u z-x. If 3 is finite-dimensional as a K-module, deg iF > 0. 

This means (by the usual definition of the minimal polynomial in matrix 

theory or more generally in linear algebra) that qF annihilates every 

x E 3 so that Fz is a torsion K[z]-module. I3 

Notice, from the second half of the proof, that the notion of a 

minimal polynomial can be extended from K-linear algebra to K[z]-modules. 

In fact, the same argument gives us also the well-known 

(4.30) PROPOSITION. Every finitely generated torsion module M 

over a principal-ideal domain R has z, nontrivial minimal D ynomial. 

qM given by + = "MR. 

(4.31) COROLLARY. If a K[z]-module X is finitely generated with 

q generators and minimal polynomial $ then X' - 

*dim X (as K-vector space) < - q~deg qx. 

(4.32) REMARK. The fact that Lf is completely reachable and is 

therefore generated.by m vectors allows us to estimate the dimension 

of Ef by (4.31) knowing only deg % but without. having computed 
f 



Xf itself. (Knowing Xf explicitly means knowing F: x H z-x, etc . r 
In other words, the module-theoretic setup considerably enhances the 

content of Proposition (3.16) . Guided by these observations, we shall 
develop in Section 8 explicit algorithms for calculating dim Zf directly 

from f without first having to compute F. 

(4.33) PROPOSITION. If % -- is a free K[ zl-module, no sta.te of 

C can be simultaneously reachable and controllable. 

w 

PROOF. We recall that = free" means that 5 is 

(isomorphic to) a finite sum of copies of K[z]. Suppose for 

simplicity that % = K[ .zl- Then x = reachable means that x = 5 1 

for some E E ~ [ z ] .  Similarly, x = controllable means that 

z '"I *x + m.1 = 0 for some m E K[ z] . Hence if x has both properties, 

This shows that 1 is annihilated by Sow, the input 5 followed 

by m, which contradicts the assumption that' 5 is free. 

The most important consequence of Theorem (4.2) is due to the 

fact that through it we can apply to iinear dynamical systems the well-known 

(4.34) FUNDAMENTAL STRUCTURE THEOREM FOR F I N I T E L Y  GFJTERATRD MODULFS 

OVER A PRINCIPAL IDEAL DOMAIN R (~nvariant Factor Theorem for ~odules) . 
Every such module M - 112th m generators is isomorphic to 



where the R/*? are quotient rings of R viewed as modules over R, 

the qi (called the invariant factors of M) are uniquely determined - 
M up to units in R qi1qiTl, i = 2, . . . , q, and, as usual, R' 

denotes the free R-module with s generators; finally, r + s < m. - 
Various proofs of this theorem are referenced in IWiMAN) FALB, , 

and ARBIB [1969, page 2701, and one is given later in Section 6. 

Note: The divisibility conditions imply that M is a torsfon 

module iff s = 0 and then VM = ql. 

One important consequence of this theorem (others in Section 7) 

is that it gives us the most general situation when 3 is not a 

torsion module C. For instance, combining (4.33) with (4.34)) we 

(4.3 6) PROPOSITION. A system cannot be simultaneously completely 

reachable and completely controllable if its K[z]-module X has any 

m-dimensional components (i. e., s > 0 - in (4.35 ) ) . 
(4.37 ) REMARK. Although our entire development in this section may 

be regarded as a deep examination of Proposition (2.14)) most of our 

coments apply equally well to (2.7), since both statements rest on 

the same algebraic condition (2.8). In fact, the only remaining - 
thing to be "algebraizedn is the notion of "continuous-time". We 

shall not do this here. Once this last step is taken, the algebraization 

of the Uplace transform (as related to ordinary linear differential 

equations) will be complete. 



5. .CYCLICITY AND RELAW QUESTIONS 

We recall that an R-module M (R = arbitrary ring) is cyclic 

iff there is an element m E M such that M = Rm. [It would be 

better to say tkst such a module is monogenic: generated by one 

element m.] 

If M is cyclic, the map R + M: r I+ r-m is an epimorphism 

and has kernel Am, the annihil~ti~z ideal of m. This plus the 

homomorphism theorem gives the well-.ho-m 

(5.1) PROPOSITION. mery cyclic R e  E: with gecerztx m 

is isomorphic with the quotient ring 8/~, viewe6 es sn 3-r3dule. 

This result is much more i~teresting when, as in our case, Ii 

is not only commutative and a principal-iseal dozain, but specifically 

the polynomial ring K[z]. 

So let X be a cyclic K[z]-module with generator g and let 

A = qgK[z], where % is the min-1 or annihilating polynomial of 
g 

g. By commutativity and cyclicity, A = qC. Hence $ is a minimal 
g g 

polynomial also for X. Write $ = $ = p. 
g x Io view of (5. l), 

X " ~[z]j$~[z]. Let us recall sone features of the ring K[z]/?l.~[z]: 

(i) Its elemerits are the residue ciasses of ~olynodals ?r (mod q ) ,  

?r E K[z] . Write these as [T] or [n$. Multiplication is 6eiin.d as 

[7rI-[vl = [TU]. 

(ii) Each [ I  is either a or a divisor of zero. In fect, 

[TI is a unit iff (T, J r )  = greatest comon divisor of T, Jr is a 
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unit  i n  K[z] ( tha t  is, (n, ) € K) . Then 

m +  T$ = 1 (u, T € K C ~ ] )  

so t h a t  [ a ]  i s  the  inverse of In]. On the  other hand, i f  

(7J, = 0 # unit i n  K[ z], then both [n]  and [v/Q] a r e  zero 

divisors since [n].[$/@] = [(n/Q)$] = 0. 

( i i i )  If $ i s  a prime i n  KI z]  ( t h a t  ts, an irreducible poly- 

nomial with respect t o  coefficients over the ground f i e l d  K), then 

by ( i i )  K[z]/$Jc[z] i s  a f ield.  This i s  a very standard construction 

i n  algebraic number theory. 

Since it i s  awkward t o  compute with equivalence classes [n], .we 

s h a l l  often prefer t o  work with the standard representative of [a], 

namely a polynomial of l e a s t  degree i n  [ I .  ? i s  uniquely deter- 

mined by [TI and the  condition deg ?? < deg *. Henceforth " wi l l  

always be used i n  t h i s  sense. 

The next kwo assertions a re  M e d i a t e :  

(5 -2) PROPOSITION. K[ z ]/vK[ z 1 - as  a K-vector space i s  isomorphic 

(n) - N 

t o t h e  K-vector space @ = {EEK[z] :  deg 5 < n = d e g $ } .  

K[z]/$x[ 21 i s  a lso  isomorphic t o  9'") - as a K[ z]-module, provided 

h. 

we define the scalar product i n  & (8.1) i.r n$. 

. (5 03) PROPOSITION. - If Xx i s  cyclic with minimal polyxomial $, 

then dim C = deg $. - 
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Looking back at  Theorem (4.34), we see that  the most general 

KC 21-module i s  a direct  sum of cyclic KC z ]  -modules. By combining 

(5.3) and (4.34) and using t h e  f ac t  t h a t  dimension i s  additive under 

direct  summing, we can replace (431 ) by the! followil~g. exact resul t :  
,.- 

(5-4) PROPOSITION. If Xz i s  a torsion module with invariant 

factors  , . . then 
Q -  

dim Z = deg + ... + deg $q. 

A simple but highly usef'ul consequence of cycl ic i ty  i s  the 

so-called control canonical form [ KALMAN, FALB, and ARBIB, 1969, 

page 441 f o r  a completely reachable pa i r  (F, g) where g i s  an 

n X 1 matrix. We s h a l l  now prpcee&to deduce t h i s  resul t .  

Observe f i r s t  t ha t  ll(F, g) completely reachablet1 i s  equiva- + 

l en t  t o  "g generates XF, the module induced by F via  (!+.13)." Let 

x,(z) = det (21 - F), 

then i s  the character is t ic  (and a lso  the) minimal polynomial for  

XF. [This i s  a well-known fac t  of module theory. See for example 

KALMAN, FALB, and ARBIB [1969, Chapter 10, Section 71 for  detai led 

discussion.] As  i n  KALMAN [19621, consider the vectors 



in $. [For cansistency, 5 (n+l) (z) = ~ ( z )  . I  These vectors are 

easily seen to be linearly independent over K. They generate % 
since $ "dn) as a K-vector space (Proposition (5.2)). Hence 

el' "" are a basis for n $ as .a K-vector space. With 

respect to this basis, the K-homomorphism 

is represented by the matrix 

 his is proved by direct computation. In pX.~<ica~~ d?gA 
necessary to use the fact that 
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(4 z-e = 2% (z)og, 1 

Note that the last row of F in (5.6) consists of the coefficients 

of . By definition, g = e . Hence g as a column vector in n 

I? has the representatioq 

Conversely, suppose (I?, & have the matrix representation (5.6-7) 

with respect to some basis in 3Sn. Then (by direct computation) 

the rank condition (2.8) is satisfied and therefore (F, g) is 

completely reachable in both the continuous-time and discrete- 

time cases (Propositions (2.7) and (2.16)). 

We have now proved: 

(5 -8) PROPOSITION. The pair (F, g) is completely reachable 

if and only if there is a basis relative to which F is given by 

(5.6) * g (5.7). 

(5.9) COZOLLARY. Given an arbitrary n-th degree polynomial 

n 
h(z) = z + p z 

n-1 + 

1 
. :. + Pn - in K[z], K = arbitrary field. There 

exists an n-vector I such that h = $-gl, if and only if the 

pair (F, g) is completely reachable. 
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PROOF. Suppose that (F, g) is completely reachable. 

With respect to the same basis (5.5) which exhibits the canonical 

forms (5.6-?) , define 

Then verify by direct computation that h = ' 

Conversely, suppose that (F, g) is not completely 

reachable. Then, recalling Proposition (2.12) (which is an 

algebraic consequence of (2.8) and hence equally valid for both 

continuous-time and discrete-time), dim X > 0 and so is also 
2 

deg 5 . Since 4 is an F-invariant subspace of X = K", 
22 

the polynomial is independent of the choic~ of basis in 

and the same is true then also for 5 22 = YX~ll . (In 
particular, 5 does not depend on the arbitrary choice of 

22 

X2 in satisf'ying the condition X = 5 @ X2.) In view of (2.12), 

we have for all .a-vectors 3, 

This contradicts the claim that h = is true for any h 

with suitable choice of 3. 

In view of the importance of this last result, we shall 

rephrase it in purely module theoretic terms: 
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(5.11) THEOREM. - Let K - be an arb i t ra ry  f i e l d  and X a cyclic 

z]-module with generator and minimal polynomial of degree 

n. There i s  a bi ject ion between n-th degree polynomials 

n n-1 + h(z) = z + Plz . . . + p, K[ z] - and K-homomorphisms 
- 

e: t-t p: x ( J ) . ~ I +  l . .g  ( j  = 1, . n - and X defined 
3 

a s  i n  (5.5)) such tha t  A i s  the minimal polynomial for  the - 
new module s t ructure induced on X by the  m a 2  2,: x t+ zox - l?(x) . 

Note t h a t  i n  (5.11) l?(x) corresponds t o  gI lx  i n  (5.10). 

The map l? i n  (5.11) defines a control l a w  for  the system 

C = (F, g, -) corresponding t o  the module X. The passage from 

z t o  z* i s  the  module-theoretic form of the well-known open-loop 

t o  closed-loop transformation used i n  c l a s s i ca l  l inear  control theory. 

PROOF. Since the  vectors X(')*g, ..., X(").g form a 

bas is  for  ?, a' i s  c lear ly  a well-defined K-homomorphism. We 

t r e a t  l? formally as an element of Ki z ]  ( tha t  i s ,  an operator 

on X i s  a K-vector space), by writing I * x  = l?(Eeg), where 

represents the  equivalence c lass  [ 5 1  = ( 5: 5.g = x) . Unless 

ident ical ly zero, I i s  never a K[ z 1 -homomorphism and therefore 

R does not commute with nonunits i n  ~ [ z ] .  

Define l? = pj  - or j = 1, . n. We prove f i r s t  
j 3' 

tha t  t h i s  choice of 1 implies h ( ' ) ( z  - I) = ~ ( " ( z )  for  

j-= 1, ...) n -t- 1. Use induction on j. By definition, 

4') (z - 8 )  = X(') (2). ;In the general case, 
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So the open-loop/closed-loop transformation is essentially a 

change in the canonical basis, provided X is cyclic. 

It is interesting that the x(') have long been known in 

Algebra (they are related to the Tschirnhausen transformation 

discussed extensively by WBER 11898, §46, 54, 74, 85, 96]), bkt their 

present (very natural) use in module theory seems to be new. 

-Theorem' (5.11) b y  be viewed as the central special case 
- - 

of Theorem A of the Introduction. Let us restate the latter in 

precise form as follows: 

(5.1.3) THEOREM. Given an arbitrary n-th degree polynomial 

n n-1 + h(z) = z + B1z * o m  ' & , in ~[z], K = arbitrary field. 

There exists an n X m matrix L - over K such that kGL, = h 

if and only if (F, G) is completely reachable. 

For some timz, this result had the status of a well-known folk theorem, 

considered to be a straightforward consequence of (5.9). The latter 

has been discovered independently by many people. (1 first heard 
- 

of it in 1958, proposed as a conjecture by J. E. Bertram and proved 

soon arterwards by the so-called root-locus method.) Indeed, the 
t - 

passage from (5.11) to (5.13) is primarily a technical problem. A 

proof of (5.13) was given by LAKGET~OP [19&] and subseq~eritly 

simplified by W O W ?  [1967]. T'e first proof was (~n~ecessarily) 

very long, but the second proof is also unsatisfactory; since 

it-depends on arguments using a splitting field of K 

*The material between these marks was added after the Summer 
School. 
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and fail when K is a finite field. We shall use this situation 

as an excuse to illustrate the power of the module-theoretic 

approach and to give a proof of (5.13) valid for arbitrary fields. 

The procedure of LANGENHOP and WONHAM rests on the following 

fact, of which we give a module-theoretic proof: 

LEMMA. - Let K be an arbitrary but infinite field. Let 

be cyclic* and completely reachable; Then there is 

an .m-vector a E I? such that (F, ~ a )  is also completely - 
reachable .. 

We begin with a simple remark, which is also useful in 

reducing the proof of (5.13) to Lemma (5.18) . 

SUB-. Every sibmodule of a cyclic rcodule over a 

principal-ideal domain is cyclic. 

PROOF OF (5.14). We use induction on m. The case 

m = 1 is trivial. The general case mounts to the following. 

Consider the submodule Y of X = 5 generated by the columns 

g p  - * * ,  %-1 of G. In view of (5.15)) Y is cyclic. By the 

inductive hypotinesis, we are given the existence of a cyclic 

generator of Y of the form g = a.g + ... + a,_l-%-l, 
Y 1 1  

ai E K. 

We must prove: for suitable a, p E K the vector a-gy + 

is a cyclic generator for X. 

*Of course, this means that the K[ z] -module X (see (4.13) ) 
is cyclic. F 



By hypothesis, X has an (abstract) cyclic generator 

gX. 
By cycl ici ty  we have the representations 

Hence our problem i s  reduced t o  proving the  following: f a r  suitable 

a, f3 E K the polynomial + &I i s  a un i t  i n  K[ z]/$K[ z ]  . This, 

i n  turn, i s  equivalent t o  proving 

where Q1, . . . , Qr i n  K[z] a re  the unique priloe factors  of 

. Let mean the  representative of l eas t  degree of equivalence 

classes mod Q . Then no pa i r  ( ) i = 1, . . r can be 
i 

zero. For if one is, then Q ( , ) ,  t ha t  is, y e i  annihilates 

the submodule XI = ~ [ z ] g ~  + K[z]% whence XI i s  a proper sub- 

module of X, contradicting the fac t  tha t  (F, G) i s  completely 
... 

reachable. If a l l  the  pi are  zero, then every Ti f 0, so 7 

i s  a uni t  i n  K[ Z]/%K[ a], and gy i s  alreedy a cyclic generator. 

So l e t  a = 1. Then the  condition ?i + bi = G eliminates at  most 

r values of f3 f ron  consideration. Since K i s  in f in i t e  by 

hypothesis, there a re  always some f3 which sa t i s fy  (5.16) . 
An essent ial  par t  of the  lemma i s  the  s t ipulat ion tha t  a E p. 

II The hypothesis F = cyclic + (F, G) = completely reachable" means tha t  
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that is, the lemnz is trivleUy true for some a E K~[Z] since 

g~ = Ga. But since we want a E K, -there must be interaction 

between vector-space structure and module structure, and for this 

reason the lemma is nontrivial. 'As a-matter ofaf&ct, the lema is false 

when K = finite field. The simplest counterexample is provided 

when (5.12) rules out a single nonzero value of f3, thereby ruling 

out p. 

( 5  017) COWE-LE. Let K = 2/2Z, that is, the ring of 

integers modulo the prime ideal 22.' - Consider - 

Notice ihat XF = X @ X2 @ X, (as a K[z]-module), where the 
1 3 

minimal polynomials of the direct smands are 

All these factors are relatively prime, ( X  X ) = I, hence 

X is cyclic. Notice also that gl generates X @ X3 while g 
1 2 

Cnerates X2 @ X  A cyclic generator for X is 
3 ' 
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A simple calculation gives 

Conditions (5.16) are here 

a-i + p.0 # o (mod x1), 

a-0 + p-1 # o (mod x2), 

These conditions have no solution in ~322. - - 

At this point, the following is the situation concerning 

Theorem (5.13) : 

(1) Its cou&erpart, Theorem A of the Introduction, was 

claimed to be true in the continuous-time case under the hypc'.:lesis 

of complete controllability. 

(2) In the discrete-time case (5.13) with the preceding 

hypothesis Theorem A is false, because-of the counterexample: the pair 

(F = nilpotent, G = 0) is completely controllable, but evidently 

3-GL is independent of L. However, in view of (5.11) , . Theorem 
(5.13) might be true also in the discrete-time case if "complete 

. controllabilityll is replaced by I1complet e reachabilitytl, this modi- 

fication being immaterial in the continuous-time case. 

(3) Because of (5 .IT), we might expect that a theorem like (5.13) 
i 

is false for an arbitrary field K. 
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(4) If our general claim that reachability properties are 

reflected in module-theoretic properties is true, then (5.13) 

should hold without assumptions concerning K, because the principal 

module-theoretic fact, that K[ z] = principal ideal domain, is 

independent of the specific choice of K. 

We now proceed to establlsh Theorem (5.13). That is, special 

nypotheses on K will turn out to be irrelevant. 

PROOF OF (5.13). Necessity is proved exactly as in (5.8). 

Sufficiency will follow by induction on m, once we have proved it 

in the special case m = 2: 

(5.18) IZMMA. . - Let K be an arbitrary field and let X - be a 

K[z]-module generated by gl, g2. There is a K-homomorphism JI 

(of the type defined in (5.11)) such that if z, = z - JI induces a 

K[z,]-module structure on X - then X is cyclic with respect to this 

structure and is generated by either g + g2 or g2. 1 

PROOF. Let Y = K[z]gl and Z = ~[zlg 2 

case I. Y /I z = 0, that is, x = Y Z. ~n (5.11) 
. . - 

take an such that J(x) = 0 -for all x E Z. Replacing z by 

z, = z - i? will change the K[z]-module structure on Y but pre- 

serve that on Z. Further, choose so that the new minimal poly- 

nomial h on Y is prime to the unchanged minimal polynomial 5 = X  
z .  

on Z. Thus there exist polynomials V, a such that Vh + a X  = 1. 

By hypothesis, every x E X has the representation 



.Now verify t h a t  

Hence gl + P2 i s  in+.eed a cycl ic  generator f02 X a s  a - 

K[ z, 1 -m~dule. 

Cas2 2. Y ~ z  =: W f: 0 .  L2t w € W. 37 11-ypothesis, 

there  i s  a 5 E ~ [ z ]  such tha t  w = 5 g2 and therefore, by 

cyc l ic i ty  of Y, there  i s  a l so  a q E ~ [ z ]  such tha t  S*g2 = w = tl'gl* 

Take same w # 0.  Then if q = m d t  (mod 5) we are done because 

- 1 - 1 5 0 %  generates Y, and so Z = X. I n  the nontr ivial  case, 

q # un i t  (mod 3) . TO show: there i s  a suitable new module s t ructure 

on X such tha t  rl, = uni t  (mod x,), X, being the minimal poly- 

nomial of X a s  a - K[ z, 1 -module. 

The main fact5 we need are  the following: 

(5.19) SVslEMK4. - Let X be a fixed element of K[ z ]  - with 

deg X = n, FX the companion matrix of X given by (5 .6) ,  
"FX 

the cyclic module induced by Fp g a cyclic generator of 

X . Then q E K[z] i s  a uni t  modulo X i f  and only i f  7 - g  i s  
Fx - - - 

a l so  a cyclic generator of X . 
Fx 

PROOF. Obvious. 
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(5.20) SUBLEMblA. . Same notations a s  i n  (5.19). Write 

7 = 7, .x(j '(z) 
J=1 J 

(x(') --- defined i n  ( 5 . 5 ) ) .  

Then i s  a un i t  rno&ul. X i f  and only i f  - - 

where y i s  the  column vector 

( 1)  PROOF. Since X , . . . x i s  the  basis for  the 

K-vector space of a l l  polynomials of degree < n, the n-tuple 

( ,  . . . ) i s  uhipuely determined by q. By defini t ion FX 

i s  the matrix representing the module operator z :  x H z = x  re la t ive  

t o  the  special basis  el, . . ., e n given by (5.5) . Similarly, 

using one of the  module axioms, we verif'y tha t  

2 .  me:: 
1 n - j  J , 

i n  other words, the numerical vector (5.22) represents the abstract 

N 

vector q a g  i n  X r e l a t i v e t o t h e s a m e b a s i s  
el.' " ' ?  en' 

Recall 
*x 
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tha t  ' ; i e g  generates i f f  ( F ~  B ( F ~ ) ~ )  i s  complete reachable. 

By (2.7) the l a t t e r  condition i s  equivalent t o  (5.21). The r e s t  

follows from (5.19) . 

(5.23) SUBIEMMA. Same notations a s  i n  (5.19) g& (5.20). Given 

any nonzero numerical n-vector (5.'22), there  ex i s t s  a polynomial X 

such tha t  (5.21) i s  sa t i s f ied .  

PROOF. Let be the f i r s t  member of the sequence of 

N N numbers ql, q2, . . . which i s  nonzero. Write 

and determine the f i r s t  r coeff ic ients  of X by the  ru le  

(since a i l  nmbers belong t o  a f ie ld,  the required values of 

ar) an exis t .  ) Now checb by computation, t ha t  these conditions 

reduce the matrix i n  (5.21) t o  the d i rec t  sum of two triangular 

mt r i ces ,  each with nonzero elements on i t s  diagonal. 

I n  view of (5.12), it follows from these f a c t s  tha t  we can 

always choose a new '$ = xt such tha t  qt = uni t  mod X,.. 
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The proof of Case 2 is not yet coaplete, however, because 

we must still extend the K[z,] -module structure from Y to X. This 

is easy. Write first Z = W @ Z' and then X = Y @ z', where the 

direct sun? is now with respect to the K-madule structure of X. Extend 

from Y to X 'cjr settin; 81 Z' = 9. Zow we have a new minimal 

polynomial X, defined over X Since 2, = Zt On Y, tl, = qt BY 

(5.12), 5 is replaced by some 5, such that 

that is, our previous representation of w # 0 in W induces a 

similar representation with respect to the new K[z*]-module structure 

on X. Since q, is a unit madulo Xi, we can write 

uq, = 1 +  TX~, with u, T E ~[z*]. 

By (5.24), we have, with respect to the K[ z,]-structure, 

This' proves thet g2 generates both Y and Z; teat is, g2 is 

a cyclic generator for X endo-i~ed with the K[z,]-structure. The 

proof of Lemma (5.18). is now complete. 



It should be clear  tha t  Theorem (5.13) i s  not a purely module- 

theoret ic  resul t ,  but depends on the interplay between module theory, 

vector-spaces, and elimination theory (via  (5.21)). For instance, 

the  fact  t h a t  1 can be extended from Y t o  X, which was needed 

i n  the  proof of Case 2, i s  a typica l  vector-space argument.** 

There a r e  many open (or forgotten) resul t s  concerning cyclic 

modules which are of in teres t  i n  system theory. For instance, it 

i s  easy t o  show tha t  an n X n r e a l  matrix i s  cyclic i f f  a cer ta in  

polynomial Y E g[zl, - . . ., z ] i s  nonzero at F; the polynomial n2 

Y i s  roughly analogous t o  the polynomial det i n  the  same ring, 

but, unlike i n  the l a t t e r  case, the  general form of Y does not seem 

t o  be known. 

We must not terminate t h i s  discussion without pointing out 

another consequence of cyc l ic i ty  which transcends the module frame- 

work. Since X = cycl ic  with generator g i s  isomorphic with 

K[ z 1/xgK[ 2 1, it i s  c lear  tha t  X - also  has the structure of t h i s  

c o m t a t i v e  ring, tha t  is, the product i s  defined as 

I f  X = irreducible, then X i s  even a f ie ld .  Hence, i n  particula,r, 
g 

X has a galois group. No one has ever given a &vnamical interpret%- 

t i o n  of t h i s  galois grou2. In  other words, there are  obvious algebraic ..- 
. I 

f a c t s  i n  the  theory of dyraraical systems which have never been examined 

d from the +mica1 point of view. For some related comments i n  the 

miw g of topological semigroups, see DAY and WALLACE [ 1967 1. 
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PREAMBLE. There has been a vigorous t rad i t ion  i n  engineer- 

ing (especially i n  e l e c t r i c a l  engineering i n  the United States  during 

1940-1960) tha t  seeks t o  phrase a l l  r e su l t s  of t h e  theory of l inear  

constant dynamical systems i n  the language of the Laplace transform. 

Textbooks i n  t h i s  area often t r y  t o  motivate t h e i r  biased po in t  of 

view by claiming tha t  "the Laplace transform reduces the analyt ical  

problem of solving a d i f f e ren t i a l  equation t o  an algebraic problem". 

When directed t o  a mathematician, such claims a re  highly misleading 

because the  mthematical ideas of the Laplace transform a re  never i n  

f ac t  used. The ideas which - are  actucl ly  used belong t o  c l a s s i ca l  

complex flmction theory: properties of rat ional  functions, the 

par t ia l -fract ion expansion, residue calculus, e tc .  More importantly, 

the word "algebraict1 i s  used i n  engineering i n  an archaic sense and 

the actual  (modern) algebraic content of engineering education and 

practice as re la ted  t o  l inear  systems i B  very meager. For example, 

the c ruc ia l  concept of the t ransfer  function i s  usually introduced 

v ia  heur is t ic  argumerits based on linea,rity or  "defined" purely formally 

a s  "the r a t i o  of Laplace transforms of the output over the input". To 

do the job right, and t o  recognize the t ransfer  m c t i o n  as  a natural  

and purely algebraic gadget, requires a dras t ica l ly  new point of view, 

which i s  now a t  hand a s  the machinery se t  up i n  Sections 3-5. The 

essent ia l  idea of our present treatment was f i r s t  published i n  

KALMAN [ 19653 I .  
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The first purpose of this section is to give an intrinsically 

algebraic definition of the transfer f'unction associated with a 

discrete-time, constant, linear input/output map (see ~efinition (3.10) ) . 
Since the applications of transfer functions are standard, we shall not 

develop them in detail, but we do want to emphasize their role in relat- 

ing the classical invariant factor theorem for polynomial matrices to 

the corresponding module theorem (4.34). 

Consider an arbitrary K[ z 1 -homomorphism f : 0 + (see lemma 

(g) following Theorem (4.2) ) . Then as a "mathematical object" f is 
equivalent to the set {f(ej), i = 1, . . ., m, ej defined by (4.6)), 

since 

(The scalar product on the right is that in the K[z]-module I', as 

defined in Section 4. ) By definition of I?, each f ( e . ) is a formal 
J - 1 power series in z with vanishing first term. We shall try to 

represent these formal power series by ratios of polynomials (which 

we shall call transfer functions%.) and then we can replace formula (6.1) 

by a certain specially defined product of a ratio of polynomials by a 

polynomial. Some algebraic sophistication will be needed to find the 

correct rules of calculations. These "rules" will consititute a 

rigorous (and simple) version of Heaviside s so-called llcalculusll. 

There are no conceptual complications of any sort.  o ow ever, we are 
dodging some difficulties by working solely in discrete-time . ) 

*This entrenched terminology is rather unenlightening in the present 
algebraic context. 
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Let Xf = n/kernel f be the s t a t e  se t  of f regarded a s  

a ~ [ ~ ] - m ~ d u l e .  We assume tha t  Xf i s  a tors ion module with nontr ivial  

m i n i m a l  polynomial Jr .  Then, for  eac3 j = 1, . . ., m we have 

By defini t ion of the module structure on r, (6.2) means tha t  the  

ordinary product of the power ser ies  f ( e  .) by the  polynomial Jr i s  
J 

a (vector) polynpmial. Hence (6.2) i s  equivalent t o  (notation: 

no dot = ordinary 

Intuit ively,  Ire can solve t h i s  equation ky writing f (e j) = Oj/). - - ---- - 

There are  two prays of making t h i s  idea rigorous. 

Method 1. Define 

-1 as  the  formal division of 0 by Jr into ascending powers of z . 
3 

Check tha t  the coeff ic ient  of zO i s  always 0. Verify by comptation 

tha t  the power se r i e s  so obtained s a t i s f i e s  (6.21) .  

Method 2, Multiply both sides of (6.21) by z ' ~ .  Write 

;(z-l) = z-")(z) and ( z )  = z n ( )  . Then $ E ~ [ z - l ]  C K[ [z-'I] 
. J 

and (6.2') becomes 

Moreover, the 0-th cbefficient of $ i s  1 (because of the convention 
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tha t  the leading coefficient of $ i s  l ) ,  hence $ i s  a uni t  i n  

K[ [ z-'I] and therefore 

Note tha t  (6.3) and (6.3') actually give s l ight ly  different  defini- 

t ions of f ( e . ) ,  depending on whether we use a t ransfer  function with 
J - 1 

respect t o  the variable z or z . ( ~ 0 t h  notations have been used 

i n  the engineering l i t e ra tu re . )  For us the formalism of Method 1 ig 
preferable.  h he calculations of Method 1 can be reduced by Method 2 

t o  the  b e t t e r - k n ~ m  calculations of the inverse i n  the  r ing K[ [ z-'I 1 .) 

Summarizing, we have the easy but f'undamental resul t :  

EXISTENCE OF TRANSFER FUNCTIONS. There i s  a b i jec t ive  

correspondence between KC z 1 -homomorphisrs f: R + I' with minimal 

polynomial Jr and transfer  function matrices of the type ----- --- 

where Q . E K'[ 21, &g Q < Geg I, and I i s  the l eas t  common 
J j .  - 

denomi.nator of Z . 
In many contexts, it i s  preferable t o  deal wit11 the Z corres- 

f 

ponding t o  f rather than with f i t s e l f .  Because the correspondence 

i s  bijective,  it i s  c lear  tha t  a l l  objects induced by f are well- 

defined a lso  for Zf and conversely. !Thus, for  instance, 

A A 
dim Zf = dim f = dim X 

f; 

qZ = i e a s t  c o m n  denominator of Z, 

= minimal polynoraial of fZ. 
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RENARK. I n  view of Propositions (4.20-21), the natural 

A 
real izat ion o f  Z, namely X = Xf , i s  completely reachable a s  

Z 
well as completely observable. ~ o t  having t h i s  f ac t  available before 1960 

has caused a great confusion, Questions such as thoeresolved by Theorem (5.13) 

tended t o  be attacked algorithmically, using special  t r i c k s  amounting 

t o  elementary algebraic manipulations of elements of Z. Very few 

theoret ical  r e su l t s  could be conclusively established by t h i s  route 

u n t i l  the  conceptual foundations of the theory of reachabili ty and 

observability were developed. 

The preceding resu l t s  may be res ta ted  as t 'rulestt whereby the 

values 03 f may be computed using Z. We have i n  fact, f(cu) = Z a ,  \q1lere 

=. multiply the polynomial matrix $Z consisting of 
. the  numerators of Z with cu, reduce t o  minimal- 

degree polynomials modulo $ and then divide 
formally by as i n  Method 1 above. 

We can a lso  compute the  ent i re  output of the system Z Z  ( tha t  is, 

a l l  output values following the application of tbe first nonzero input 

value) by the ru le  

A 
(6.7) Zcu = (*h)/$, 

= same as above, but do not reduce modulo $. 

I n  t h i s  second case, the  output sequence w i l l  begin with a pos i t ive  

power of z. (!!?he coefficients of the positive powers of z a re  

thrown away i n  t h e  defini t ion of f (see (3.7)) and i n  the defini t ion 
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of the  scalar product i n  P, i n  order t o  secure a simple formula 

for  Xf =  kernel f . )  

Many other applications of t ransfer  f'unctions may be found i n  

KALMAN, FALB, and ARBIB [ 1969, Chapter 10, Section 101 . 
It i s  easy t o  show tha t  the  t ransfer  function associated with 

the  system Xf = (I?, G, H) i s  given by 
zf 

= H(ZI - F)-'G.  h his i s  

jus t  the formal Laplace transform computed from the constant version 

of (1.12) by set t ing z = d/dt or from (1.17) by se t t ing  

x( t  + 1)  = zx(t)  .) Probably the simplest way of computing Z i s  

via the formula 

(ZI - F ) - ~  = z i )  (z) , q = deg 9, J" 

where iF is  the minimal polynomial of the matrix F and the super- 

sc r ip t  denotes the special polynomials defined i n  (5.5) . The matrix 

ident i ty  (6.8) follows a t  once from the  c lass ica l  scalar ident i ty  

[WEBER, 1898, 91 

upon se t t ing  w = F, T = JrF, and invoking the Cayley-Hamilton theorem. 

Much of c lass ica l  l inear  system theory was concerned with computing 

zf ' 
I n  the  modern context, t h i s  problem ttfactorstt  into f i r s t  solving 

the  real izat ion problem f + Zf acd then applying formula (6.8). See 

Sections 8 and 9. 

One of the mysterious features of Rule (6.6) (as contrasted with 
r 
..I. 

the  conventions-rule (6.7)) i s  the necessity of reducing modulo 9. 

The simplest way of understanding the importance of t h i s  
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aspect of the prablem i s  t o  show how t o  r e l a t e  the module invariant 

factors  occuring i n  the  structure thsorem (4.34) t o  the c lass ica l  

fac ts  concerning the  invariant factors  of a polynomial matrix. 

(6.9) I N V W  FACTOR THEOREM FOR MATRICES. - Let P - be a p X m 

matrix with elements i n  an arb i t ra ry  principal-ideal domain R. Then 

where A and B a r e  p X p and m X m ~ a t r i c e s  (not necessarily - - - 
unique) with elements i n  R - and det A, det B uni t s  i n  R, while 

II = diag (Al, . . ., % 0, . . ., 0) with hi E R - 

i s  unique (up t o  un i t s  i n  R) - with hilhi+l, i = 1, ..., q - 1, and 

P = rank P. - The h are cal led the invariant factors  of P. 

As anyone would expect, there i s  a correspondence between the 

module structure theorem ( b .  34) and the matrix structure theorem (6.9) 

11- and, i n  particular,  between the respective invariant factors  , . . . , r 
and Al, . . ., . Let us sketch the stacdzrd proof of t h i s  fac t  follow- 

ing CURTIS and REINXR 11962, $13.31 who also give a proof of (6.9). 

m PROOF OF (4.34) . Consider the R-homon;_or_~hism from R 

onto M given by p: e I+ gi, where the e a re  the standard 
i i 

m 
basis elements of R ( r e c a l l  (4.6)) and the gi generate M. 

Clearly, M R ~ / N ,  where N = kernel p. It can be proved tha t  

a 
N " R i s  a f ree  s~bmodule of R ~ ,  with a basis of a t  most < m - - 
elements. Write each basis element f of N a s  C pij*ei, pij E R. 

j 



-1 
Apply (6.9) to the R-matrix I?. Define = C cij*fi, C = B , 

. . . 8 

A 
n 

e = Z a we. .. By (6.10-ll), fk = ?i*9i. Hence 
3 ,  ij 1 

Then, by "direct sum1', 

That is, (4.34) holds with Jri = hi and r = rank P = J. 

By the same type of calculations, we can prove also 

(6.12) THEOREM. , . . . A be the invariant factors of 
9 

$Z given bx (6.9), and let (Ai, q )  = Bi, i = 1, . . . , q. Then the 

invariant factors of % - are 

where r is the smallest integer such that JrI A. for 
1 - 

1 = r + 1, ..., q =  rank 

E K l O 7 .  ConBicleler the ~l[z]-ephorphism p: S2 -t %: o, -1 [ U ] ~ .  

Clearly, m E [0IZ = kernel p iff Z*m = 0 (see (6.6)). ~~uiialentl~, 

($~)m = 0 (mod $). Using the representation whose existence is claimed 



by (6.9), write JrZ = CAD (c, A, D = matrices over K[z] .) Define 

-I W = D Y, where 

Then AY = 0, ($z)w = 0, and W has clearly maximal rank among K[z]- 

matrices with this property. So the columns of the-matrix W consti- 

tute a basis for kernel p. The rest follows easily, as in the proof 

(6.13) REN4RK. The preceding proof remains correct, without any 

modification, if the representation $Z = CAD, det C, det D = units 

is taken in the ring K[ z]/$K[ z], rather than in K[z]. The former 

representation follows trivially from the latter but may be easier to 

compute . 

(6.14) REMARK. Theorem (6.12) shows how to compute the invariant 

factors of XZ from those of $Z. We must define the invariant 

factors of Z to be the same as those of XZ (because of the 

bijective correspondence Z ~t xZ). Consistency with (6.12) demands 

that we write - 

where / is defined as in (6.3). In other words, Jri are 
the denominators of the scalar transfer function A '  -.- after - cancellation 

of all common factors. 

Theorems (4.34) and (6.12) do not fully reveal the significance 

of invariant factors in dynamical systems. Nor is it convenient to 

deduce all properties of matrix-invariant factors f rom'the representation 
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theorem (6.9). It i s  interest ing tha t  the sharpened resu l t s  we present 

below are much i n  the  s p i r i t  of the or iginal  work of WEIERSTRASS, H. J. S. 

SMITH, KRONEICKER, FROBFAIUS, and WSEL, a s  summarized i n  the well-known 

monograph of MUTH [1899]. 

(6.16) DEFIPJITIOW. ~ e t  A, B rec taanmar  matrices over a uniaue fact- 

orizaf,ion doGin R. A I B  (read: - A divides B) i f f  there are matrices 

V, W (over - R, of appropriate sizes) such tha t  B = VAW. 

This i s  of course just  the usual defini t ion of "divide" i n  a ring, 

specialized t o  the noncommutative r ing  of matrices. 

The following resu l t  [MUTH 1899, Theorems IIIa-b, p. 521 shows 

tha t  i n  case of principal-ideal domains the correspondence between 

matrices and t h e i r  invariant factors preserves the divide relat ion 

( i s  "flunctcrial" with respect t o  "divide") : 

(6.17) THEOREM. - L e t  R be e, principal-ideal - domain. - Then AIB 

i f  and only i f  A ~ ( A )  1 ?L(B) fo? a l l  .i. - 

PROOF. Sufficiency. Write the represelltation (6.10) a s  

By hypothesis, there i s  a % (diagonal) such tha t  i l 3  = 4. Hence 
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Necessity. This is just the following 

(6 18) LEMMA- For an arbitrary unique-factorization 

domain R, A! B implies hi(A)I  hi(^). 

P3OOF. By elementary determinant manZpulations, as in 

[1899, Theorem 11, p. 16-17 I. 

This completes the proof of Theorem (6.i7) 

(6.S) mx. Since (6.9) does not apply (why?) to unique factori- 

zation domains, for purposes of using Lema (6. a) we need WEIERSTRASS s 
definition of invariant factors: if A .(A) = greatest common factor of 

J 
all j X j minors of a matrix A, with A~(A) = 1, then 

A. (A) = A~(A)/A~-~(A) . Of course, this definition can be shown to be 
1 

equivalent (over principal-ideal donains) to that implied by (6.9). 

In analogy with Definition (6.~3, let us agree (note inversion] ) on 
. . 

(6.20) DEFINITION. - Let Z1, Z2 be transfer-function natrices 

z11Z2 (read: Z1 divides z2) iff there are matrices V, w over ~ [ z ]  - 
such that Z1 = VZ W. (~ote that Zll Zg implies at once: I i Iz .) 

2 z1 2 

(6.21) THEOREM. zll z2 if and only if qi(zl) 1 qi(zg) for all i. 

PROOF. This is the natural counterpart of Theorem (6.16), 

and follows from it by a simple calculation using the definition of 

t,(z) given by (6.15). 
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(6.22) DEFINITION. Ell.$ (read: - C can be simulated by c*) 1 

iff T I T y  tha t  i s ,  i f f  XC i s  isomorphic t o  a submodule of 
1 2  1 

[o.r isomorphic t o  a quotient module of % I .  
2 

This definition i s  a lso  f'unctorially related t o  the  defini t ion 

of "divide" over a principal  idea l  domain R because of the following 

standard resul t :  

(6.23) THEOREM. - Let R be a principal-ideal domain and X, Y 

R-modules. Then Y i s  (isomorphic) t o  a submodule or quotient module 

of X i f  and only i f  - - 

PROOF. Sufficiency. Take both X and Y i n  canonical 

form (4.34), with xl, ..?, 
xr(x) 

generating the cyclic pieces of X, 

and Y1, J Yr(x) (with yi = O i f  i > r ( ~ )  ) those of Y. The 

assignment y w ( i ( ~ ) / i ( ~ ) x i  defines a monomorphism Y Y X, t ha t  

is, exhibits Y as (isomorphic t o )  a submodule of X. Similarly, the  

assignment x. w yi defines an epimorphism X -+ Y exhibiting Y a s  
1 

(isomorphic to)  a quotient module of X. 

Necessity (following BOURB4KI [AlGbre, Chapter 7 (2e ed.), 

Section 4, Exercise 81). Let Y be a submodule of X. By (4.34), 

X L/N where L, N a re  free R-modules. By a c l a s s i ca l  isomorphism 

theorem, Y i s  isomorphic t o  a quotient module N/N, where L 3 M 3 N 

and M i s  f ree  (since submodules of a free module a re  free) .  
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From the last relation, r ( ~ )  < r ( ~ ) .  Now observe, again using (4.34) - 
that, for  any R-module X and. any n E R, 

and therefore 

wk(x) = i dea l  generated by (n: r ( n ~ )  C k} . 
Since Y i s  a submodule of nX f o r  a l l  n € R, it follows that 

R$~(x)  3 R$~(Y),  and the proof i s  complete for  the case when Y i s  

a submodule of X. The proof of the other case i s  similar. 

PROOF. Immediate from the  f a c t  tha t  X i s  a submodule 
zc 

of C (see Section 7). 

Now we can swnmaarize main re su l t s  of t h i s  section as  the 

(6.25) P R I ~  D E C O ~ S I T I O N  THEOREM FOR L I ~  DYNAMICAL S Y S ~ .  

The following conditions a re  equivalent: 

( i )  Z1 divides Z 
2 ' 

( i i )  qi(zl) d iv ides  qi(Z2) for a l l  i. 

( i i i )  .Zz can be simulated by Zz . 
1 2 

PROOF. This follows by combining Theorem (6.21) with Theorem 

(6.23), since qi(Z) = ti(ZZ) by definition. 
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(6.26) 1-TATION. The defini t ion of Zll Z2 means, i n  syste& 

theoret ic  terms, t h a t  the inputs and outputs of the machine whose t ransfer  

f'unction i s  Z2 a r e  t o  be " r e ~ o d e d ~ ~ :  the original  input u, i s  replaced by 
2 

an input mg = B ( Z ) U ~  and the  output y2 i s  replaced by an output ' 

yl = A ( z ) ~ ~ ;  with these "coding" operations, Z2 w i l l  ac t  l i k e  

a machine with t ransfer  flmction Z1. In view of the defini t ion of a 

t ransfer  function, the equation Z1 = AZ B i s  always sa t i s f i ed  whenever 2 

A, B are  replaced by x, (reduced modulo @ ) . This means tha t  the 
z2 

coding operations can be carr ied out physically given a delay of 

d = deg qz un i t s  of  time (or more). NO feedback i s  involved i n  coding, 
2 

i t  i s  merely necessary t o  s tore the  d l a s t  elements of the input and 

output sequences. Hence, i n  view of Theorem (6.25) and Corollary (6.24), 

we can say tha t  it is  possible t o  a l t e r  the meal behavior of a 

system C2 a r b i t r a r i l y  by external coding involving delay but not 

feedback i f  and only i f  the invariant factors  of the desired external 

behavior ( z ~ )  are  divisors  of invariant factors  of the e x t e ~ a l  - 
behavior (Z ) of the  given system. The invariant factors  may be 

z2 
cal led the  PRDES of l inea r  systems: they represent the  atoms of system 

behalfior which cannot be simulated from smaller uni t s  using arb i t ra ry  

but feedback-free coding. I n  fact,  there i s  a close (bot not isomorphic) 

relationship between the  Krohn-Rhodes primes of automata theory (see 

KKtMfW, FALB, an% m p  [1969, Chapterb 7-91) and ours. A f u l l  t r ea t -  

ment of t h i s  par t  of l inea r  system theory w i l l  be published elsewhere. 
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7. ABSTRACT THEORY OF REALIZATIONS 

The purpose of this short section is to review and expand those 

portions of the previous discussion which are relevant to the detailed 

theory of realizations to be presented in Sections 8 and 9. The same 

issues are examined (from a different point of view) also in KADIAN, 

FAI;B, and ARBIB [ 1969 1 . 
Let f: R -, I? be a fixed input/output map. Let, us recall the 

construction of X as a set and as carrying a ~[zl-mod~le structure 
f' 

(sections 3 and 4). It is clear that (i) f = L ~ D I . L ~ ,  where 

pi: R + X,: m H [m], 

are K[ z ]  -homomorphisms, and (ii) pf = epimorphism while L = monor ~orphism. 
f 

We have also seen that 

rvf = epimorphism U X is completely reachable; f 

L = monomorphism <=> Xf is completeiy observable. (7-1) 1 f 
These facts set up a "f'unctor" between system-theoretic notions and 

algebra which characterize Xf uniquely. Consequently, it is desirable 

to replace also o w  system-theoretic definition of a r2alization (3.12) 

by a purely algebraic one: 

(7 2) DEFINITION. A realization of a K[zj-homomorphism f: SZ + r 

is any factorization f that is, any commutative diagram 
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of K[z]-homomorphisms. The K[z]-module X is called the state - - 
module of the realization. A realization is canonical iff it is 

completely reachable and completely observable, that is, . p is 

surjective and L is injective. 

A realization always exists because we can take X = R, p = lln~ 

REMARK. It is clear that a realization in the sense of (3.12) 

can always be obtained from a realization given by (7.2). In fact, 

define C = (F, G, H) by 

G = p restricted to the submodule Iw: l c u l  = 11. 

H = L followed by the projection y H ~(1). 

It is easily verified that these rules will define a system with 

f, x = f. Given any such C, it is also clear that the rules 

define a factorization of f. Hence the correspondence between (3.12) 

and (7.2) is bijective. - 

The quickest way to exploit the algebraic consequences of our 

definition (7.2) i s  via the following arrow-theoretic fact: 
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ZEIGEZl FILL-IN LEMMA. Let A, B, C, D be sets and a, @, Y, 

and 6 set maps for which the following diagram commutes: - 

If a is surjective and 6 is injective, there exists a unique set - 
map cp corresponding to the dashed arrow which preserves commutativity. 

This follows by straightforward it diagram-chasing1', which proves 

at the same time the 

COROLLARY. The. claim of the lemma remains valid if 

are replaced by "R-rnodt~les~l and "set maps" by llR-homomorphismsll. 

Applying the m o u e  version of the lemma twice, we get 

(7 6 )  PROPOSITION. Consider any two canonical realizations of -. a 

fixed f: the corresponding state-sets are isomorphic as K[Z]-modyles. 
? 

Since every K[ z 1 -module is automatical-ly also a K-vector space, ( j .  6) 

shows that the two state sets are K-isomorphic, that is, have the same 

dimension as vector spaces. The fact that they are also K[ z 1 -isomorphic 

implies, via Theorem (4.34), that they kiave the same invariant factors. 

We have already employed the convention that (in view of the bijection 

between f and Z ), the invariant factors of f and Xf are to be f 
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identified. In view of (7.6)) this is now a general fact, ' not- dependent 

on the.specia1 construction used to get X . We can therefore restate 
f 

(7.6) as the 

(7 -7) ISOMORPHISM THEOREM FOR CANONICAL RFALIZATIONS. Any two 

canonical realizations of a fixed. f have isomorphic state modules. 

The state module of a canonical realization is uniquely characterized 

(up to isomorphism) by its invariant factors, which may be also viewed 

as those of f. 

A simple exercise proves also 

(7 -8) PROPOSITION. If X is the state module of a canonical 

realization f, - then dim X (as a vector space) is minimum in the 

class of all realizations of f. 

This result has-been used in some of the literature to justify 

the terminology "minimal realizationn as equivalent to "canonical 

realization". We shall see in Section 9 that the two notions are 

not always equivalent; we prefer to view (7.2) as the basic defini- 

tion and (7.8) as a derived fact. 

(7 9)  REMARK. Theorem (7.7) constitutes a proof of the previously 

claimed (4.24) . To be more explicit : if C = (I?, G, H) and 
A h A 

2 = (F, Gy H) are two triples of matrices defining canonical realiza- 

tions of the same f, then (7.7) implies the existence of a vector- 
A 

space isomorphism A: X X such that 
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h 
If we identify X and X then A is simply a basis change and it 

follows that the class of all matrix triples which are canonical 

realizations of a fixed f is isomorphic- with the general linear 

group over X. 

The actual computation of a canonical realization, that is, 

of the abstract Nerode equivalence classes [wIf, require a consider- 

able mount of applied-mathematical machinery, which will be developed 

in the next section. The critical hypthesis is the existence of .- 

a factorization of f such that dim X < a. (this is sometimes 

expressed by saying that f has finite rank.) Given any such reali- 

zation, it is possible to obtain a canonical one by a process of 

reduction. More precisely, we have 

(7.11) THEORZM. Every realization of f with state module X 

contains a subquotient (a quotient of a submodule, or equivalently, 

a submodule of a quotient) X* of X which is the state-module of 

a canonical realization of f; 

PROOF. The reachable states Xr =image ir are a submodule 

of X and so are the unobservable-states Xo = kernel L. Hence 

X, xr/xr " x is a subpuot ient of X. It follows immediately that 
0 

X is a canonical state-module for f . [ The proof may be visualized 

vie the following comutative diagram, where the j's and p's are 

canonical injections and projections .I 
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(7.12) REMARK. Since any subquotient of X is isomorphic to a 

submodule (or a quotient module) of X, it follows from Theorem (6.23) 

that X can be state-state module of a realization only if qi(f)lqi(x) 

for all i (recall also Corollary (6.24) ) . This condition, however, is 
not enough since the are invariants of module isomorphisms and not 

i 

isomorphisms of the commutative diagram (7.2). 

The preceding discussion should be kept in mind to gain an over- 

view of the 'algorfthms to be developed in the next sections. 
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8. CONSTRUCTION OF REALIZATIONS 

Now we s h a l l  develop and generalize the basic algorithm, or iginal ly 

due t o  B. L. Ho (see HO and KALWU [1966]), fo r  computing a c k o n i c a l  

real izat ion C = (F, G, H) of a given input/output map f .  Most of 

the discuss5on w i l l  be i n  the language of matrix algebra. 

Notations. Here and i n  Section 9 boldface capi ta l  le t te rs*  w i l l  

denote block matrices or  sequences of matrices; f i n i t e  block matrices 

w i l l  be denoted by small Greek subscripts on boldface c a ~ i t a l s ;  the 

elements of such matrices w i l l  be denoted by ordinary capi tals .  This 

i s  intended t o  make the  prac t ica l  aspects of the computations se l f -  

evident; no further  explanations w i l l  be made. 

Let f: Sl +D r be a given, fixed K[z]-homomorphism. Using only 

the K-linearity of f we have tha t  .- 

where the % (k > 0) are  p X m matrices over the fixed f i e l d  K. 

We 'denote the t o t a l i t y  of these matrices by 

Then it i s  clear  tha t  the  specification of a K[z]-homomorphism f 

i s  equivalent t o  the specification of i t s  matrix sequence ~ ( f ) .  More- - 
over, i f  C rea l izes  f (8.1) can be written expl ic i t ly  a s  

*Note t o  Printer:  Indicated by double underline. 



Comparing (8.1) and (8.2) we can translate (3.12) into an equivalent 

matrix-language 

(8.3) DEFIMTION. A dynamical system C = (F, G, H) realizes a 

is satisfied. 

iff the relation 

6 Let us now try to obtain also a matrix criterion for an infinite 
., . seQuence 4 to have a finite-dimensional realization. The simplest - 
I way to do that is to first write down a matrix representation for the 

Ei 
- 

? f: Cl += r, So let 

vector vith elements (~~(0)) . . .) UJ (0)) ~~(1)) ) m 

issically, g(A) is known as the (infinite) Hsnkel matrix associated 
I - - 
with .A. - We denote by H - the p X V block submatrix of g appear- 

-PI v - 
ing in'the upper left-hand corner of H. 

m 
a (A) < d i m C  for all P, V > 1. = U , v =  = = I  
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COROLLARY. An i n f in i t e  sequence A - - has a finite-dimensional - 
real izat ion only i f  rank H (A) i s  constant fo r  a l l  p, V suf f ic ien t ly  

=p, v - - 
large. 

PROOF. I f  dim C = the  claim of the  proposition i s  

vacuous (although formally correct ! ) . Assume therefol-e t h a t  dim C < a 

and define from C the f i n i t e  block matrices 

Then 

by the  defini t ion (8.3) of a realization. It i s  c lear  tha t  rank R =v 

and rank g are  at most n =  dimC. Thus our claim i s  reduced t o  
-P 

the standard matrix f ac t  

rank (AB) < - min [ rank A, rank B) . - 

Our next objective i s  the proof of the converse of the corollary. This can be 

done i n  several ways. The or iginal  proof i s  due t o  HO and XALMAN 11.9661; 

similar r e su l t s  were obtained independently and concurreztly by YOULA 

and TISSI [ 19661 a s  well a s  by SILmRMAN [ 19661. Two different  proofs 

are  analyzed and compared i n  K A Z , ? ,  FALB, and ARBIB [1969, Chapter 10, 

Section 111. A l l  proofsdepend on cer ta in  f ini teness  arguments. We 

sha l l  give here a variant of the proof developed i n  HO and KALMAN 119691. 
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(8.6)' DEFINITIOPJ. The infinite Hankel matrix. _H - associated with 
. - 

the sequence 4 has finite length A = (At, A") iff one of the follow- - 
ing two equivalent conditions holds: 

A1 = min {at: rank gI,;v.=rank ga,+i for all K,V = 1, 2, ... ) < , - 

A" = {min a!t : ra- gP, I,, = rank gp, j f I + ~  - 
for all K, p = 1, 2, ... ) < m e  

is the row length of H and A" is the column length of H. - - 

The equivalence of the two conditions is immediate from the 

equality of the row rank and column rank of a finite matrix. The proof 

of the following result (not needed in the sequel) is left for the redder 

as an exercise in familiarizing himself with the special pattern,,of the 

elements of a Hankel matrix: 

PROPOSITION. For any , - the following inequ?&ties are 

either both true [K - - has finite length]' or both false [otherwise]: - - 

The most direct consequence of the finiteness condition given by 

(8.6) is the existence of a finite-dimensional representation S and - 
Z of the shift operator uA acting on a sequence A. The I1operand" - - 

will be the Hankel'matrix associated with a given A; As we shall see - 
soon, this representation of the shift operator induces a rule for 
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computing the matrix F of a realization of A. - - This is exactly what 

we would expect: module theory tells us that, loosely speaking, 

DEFIhTTIOX; .%he shift opezato& o on an infinite sequence A 

A - is given by - 

the corresponding shift operator on Hankel matrices is then 

(of course, a is well-defined also on submatrices of a Hankel matrix.) H 

(8-8) MAIN LEMMA. A Hankel matrix - associated with an infinite 

sequence A - has finite length if and only if the shift operator cH - 
has finite-dimensional left and right matrix representations. fiecisely: 

H - has finite length h = (At, hi') if and only if there exist 1' X J1 - 
and an X J" block matrices S - - =  and Z such that - 

and furthermore the minimum size of these matrices satiseing - (8.9) - is 

hl X ht and h" X At'. - 
PROOF. Sufficiency. Take any JB1 X J" block matrix Z_ - 

which satatfsfies (8.9) . Compute the last column of IIp, J1lg: 
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for a l l  j = 0 1 . . . (where Z i s  the (p, V )  th element block 
PV 

of z). - Relation (8.10) proves that - 

- - rank lIK+l, f o r  a l l  K = 0, 1, . . . ; ZK+1,2 If  

the general case follows by repetition of the same argument. Hence the 

existence of the claimed Z - - implies that  the colunn.length An of g - 

cannot exceed the size of ' Z .  - - If actually A" i s  smaller than the s h e  

of the smallest which works i n  (8.9), we get a contradiction from - 
the necessity part of the proof. The claims concerning - S are proved 

by a s t r i c t l y  dual argument. 

Necessity* By the definition of A", each column of the 

(h" + l)th block column of lIy, i s  l inearly dependent on the 

columns of the preceding block columns of zp, moreover, t h i s  

property i s  t rue for a l l  integers y, no d t t e r  how large. So there 

exist m X m matrices Z . . . Z such that  the relabion 

holds identically for a l l  j = 0, 1, ... . Now define Z_ t o  be an - 
Atl X h" block companion matrix of m X m block made up from the Zi 

just 'defined: 
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4 
The verification of (8.9) is immediate, using (8.11). The existence 

of ht x ha block matrix S - verifying (8.9) follows by a strictly - 
dual argument. 

Now we have enough material on hand to prove the strong version 

of Corollary (8.5) : 
J 

(8.12) !EEOREM. iln infinite sequence A - has a finite-dimensional - 

rea.lization of dimension n if and only if' the associated Hankel 

mfttrix H - has finite length A = ( ) ,I ,  A"). - 

PROOF. Sufficiency. Let gh", be a A" X 1 block 

column matrix whose first block element is an m X m unit matrix and 

the other blocks are m X m zero matrices. Using (8.9) with -A - , 
define 
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Then, for  a l l  k > - - 0, comput 2 

the second step uses (8.9). By defini t ion of cA and d, - the last 

k 
matrix i s  just  the  (1, l)th element of - lI(cA(&)), - namely Alck. 

Hence the given C i s  a real izat ion of A. - 

Necessity. This i s  immediate from Cor: ;ary (8.5). 

Now we want t o  a t tack  the problem of finding a canonical realiza- 

t ion  of , since the  real izat ion given by (8.13) i s  usually very f a r  - 
from canohical. Our succeeding consideratiomhere an6 i n  Section 9 

are made more transparent i f  we digress fo r  a moment t o  establ ish 

another consequence of (8.8) . 
By outrageous abuse of language, we s h a l l  say tha t  4 - has f i n i t e  

length i f f  z(A) has f i n i t e  length. We note - - 

(8.14) DEFINITIONo An i n f i n i t e  sequence 3 - i s  an extension of 

order N of ( the  i n i t i a l  part  of) an i n f i n i t e  sequence 4 - iff 

% = Bk for k = l , . . . ,  N. 

(8.15) THEOREN. No i n f i n i t e  sequence of f i n i t e  length (At, A") 

has d i s t inc t  length-preserving extensions of any order N > - A t  + A". 

PROOF. Suppose i s  a length-preserving extension of order - 
N of A, the length of both sequences being ( A t ,  A"), with N > At  + A". - = 

By (8.8), both sequences sa t i s fy  re la t ion  (8.9), with sui table  & and 3. - 
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m e  sequence A - - i s  uniquely determined by $ acting on ~ A l , y , ( $ )  

from the l e f t  2nd the  sequence _B - i s  uniquely determined by ZB 
(B) from the  r ight .  The two matrices acting on the  matrix zAl , At, - - 

are  equal by hypothesis on N. Moreover, 

and 

. . 
( B) H h t , V t ( ~ ) &  = ~ & , l , A w  = 

are - also  equal, since the matrices on the  right-hand side depend only 

on the  2nd, ..., N-th member of each sequence. Using only t h i s  f a c t  

and the associat ivi ty of the matrix product 

Now we can hope fo r  a real izat ion algorithm which uses only the 

f i r s t .  A' + htt terms of a sequence of f i n i t e  length. I n  fact, we have 

.(8.16) B. L. HO1sREALIZATIONALGORITHM. Consideranyinf in i te  

sequence of f i n i t e  length with associated Hankel m t r i x  The - 
f o l l o ~ ~ i n g  steps w i l l  lead t o  a canonical real izat ion of A: - - 
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(i) Determine At, A". 
. - . .. - in doing so, determine (ii) Compute n = rank Ri,, A,,, 

nonsingular pAt X pht and mh" XmA" matrices I?, Q such that 

( iii) Compute 

where R cm are idempotent "editing" matrices corresponding to the 
pJ 

operations "retain only the first p rows" and "retain only the first 

m columns". 

We claim the 

(8.19) REALIZATION THEORE31 FOR IXFIKCTE SEQUENCES. -For any infinite 

sequence A - whose associated Hankel matrix H has finite length - - 
(At, A"), ' B. L. Hots formulas (8.17-18) yield a cano-nical realization. 

PROOF. If C defined by (8.17-18) is a realization of 4, - 
then it is certainly canonical: by (8.4) C has minimal dimension in 

the class of all realizations of A and so it is canonical by (7.8). - 

The required verification is interesting. First, drop all 

subscripts. Observe that H# = QCRP is a pseudo-inverse of H, that - - 
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- 
# is, E#H = 5. Then, by defini t ion of F, G, H, '2nd H , - -  - 

by repeated application of (8.9) ,. 

The l a s t  equation c a l l s  fo r  picking out the f i r s t  p rows and the 

first m columns of c - which i s  just  *lfk? as required. 

(8.20) COlrlMENT. This i s  a considerably sharper resul t  than Theorem 

(8.12)) i n  two respects: 

( i )  It i s  no longer necessary t o  compute Z_: we simply - 
use the matrix 2 ( )  which i s  part  of the data of the problem. -A1, A" 

( i i )  Formulas '(8.18) give the desired real izat ion i n  minimal 

form: there i s  no need t o  reduce (8.13) t o  a minimal real izat ion (reca.11 

here (7.11)). 

Notice a lso  tha t  the proof of (8.19) does not require (8.12) 

but depends ( jus t  l i k e  the l a t t e r )  on direct  use of (8.8). 
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An apparently serious limitation of the algorithm (8.16) is the 

necessity to verify abstractly that "4 - has finite length". Of 

course, this can be done only on the basis of certain special hypotheses 

on A, - given in advance. (~xamples : (i) % = 0 for all k > q; - 
(ii) % = coefficients of the Taylor expansion of a rational f'unction. ) 

Fortunately, the difficulty is only apparent, for the preceding develop- 

ments can be sharpened further: 

FlIMWENTAI; THEOREM OF LINEAR REALIZATION THEORY. Consider 

any infinite sequence A - and the corresponding Hankel matrix H. - - - 
Suppose there exist integers -81, I" 'such that 

(4) = rank gI ($1, 'arik gJl,all - 

(A) = ra* gll,eIl+l = 

A 

Then there exists unique extension A - of A of order + I" - - - 
such that AA < I1 and AX < an; moreover, applying formulas (8.17-18) 

A = 
- A = 

with At = -81, A" = a" gives a canonical realization of A. - - 

PROOF. Exactly as in the necessity part ofthe proof of 

(8.8), coridition (8.22) implies the existence of S and Z_ such that - - 

h 

Define an extension A of A of order -81 + EM by - - - 
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any 11, P' satisfying 1' + a" = N. Tkis problem is the topic of 

the next section. 

(8.25) FINAL COI4ElC.  An essential feature of B. L. .Hot s algorithm 

is that is presPcrves the block,structure of the data of the problem. Of - 
course, one can obtain parallel results by treating zJ,,  a,, as an 

ordinary matrix, disregarding its block-Iia&el structure. Such a 

procedure requires looking at a minor of H - of maxirmun rank, and was - 
described explicitly by SILVEN/IAN [ 19661 and SILVEiRljM and MEADOFIS [ 19691 . 
There does not seem to be any obvious computation~l advantage associated 

with the second method. 



9. THEORY OF PARTIAL REAIJZATIONS 

I n  one obvious respect the theory of real izat ions developed 

i n  the  previous section i s  rather unsatisfactory: it i s  concerned 

with in f in i t e  sequences. From here on we c a l l  a system sat isfying 

(8.3) a complete realization, t o  distinguish it from the prac t ica l ly  

more interest ing case given by 

(9.1) D E F I N I T I O N .  - Let A - - = ( A ~ ,  A2, . . . ) be an in f in i t e  

sequence of p X m matrices over a fixed f i e l d  K. A dynamical 

system C = (F, G, H) i s  a p a r t i a l  real izat ion of order r - of 

A' iff  = - 

= &G - for  k = 0,1, ..., r. 

We s h a l l  use the  same t e d n o l o g y  i f ,  irjstead of an i n f i n i t e  

sequence A, - we are  given merely a f i n i t e  sequence A = ( A ~ ,  . . . , As), - =S 

s > r. The reason fo r  t i i is  convention w i l l  be clear  from the dis- - 
cussion t o  follow. We s h a l l  c a l l  the first r terms of A - a p a r t i a l  - 
sequence (of order r).  

The concepts of canonical p a r t i s l  real izat ion and minimal 

p a r t i a l  real izat ion w i l l  be understood i n  exactly the same sense a s  for  

a complete realization. We warn tne reader, however, tha t  now these 

two notions w i l l  t u rn  out t o  be inequivalent, i n  tha t  

minimal p a r t i a l  3 canonical p a r t i a l  

but not conversely. 

Our main in teres t  w i l l  be t o  determine a l l  equivalence classes 

of minimal p a r t i a l  realizations; i n  general, a given sequence w i l l .  
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have i n f i n i t e l y  many inequivalent minimil p a r t i a l  real izat ions i f  

r i s  suf f ic ient ly  s m a l l .  

According t o  the Main Theorem (8.21) of the  theory of realiza- 

tions, the  minimal p a r t i a l  real izat ion problem has a unique solution 

whenever the  rank condition (8.22) i s  satgsfied. I f  the  length r of the 

p a r t i a l  sequence i s  prescribed a prior i ,  it may well  happen . tha t  (8.22) 

does not hold. What t o  do? Clearly, i f  we have a minimal p a r t i a l  

real izat ion (F, G, H) of order r we can exten3 the  p a r t i a l  

sequence of A on which t h i s  real izat ion i s  based t o  an in f in i t e  =r 

sequence canonically realized by - (F, G, H) simply by se t t ing  

- 

Consequc ntly, we have the  preliminary 

PROPOSITION. The' determication of a minimal p a r t i a l  

real izat ion fo r  A i s  equivalent t o  the determination of a l l  =r 

extensions of  a p a r t i a l  sequence A such tha t  the extended =r 

sequence i s  

( i) f in i t e -  dircen sic?- - 

( i i )  h t s  dimension i s  minimal i n  the c lass  of a11 extensions. 

It i s  t r i v i a l  t o  prove.that finite-dimensional extensions exis t  

f o r  any p a r t i a l  sequence (of f i n i t e  length). Hence t'ne problem i s  immediately 

reduced t o  determining extensions which have minimal dimension. The 

solution of t h i s  l a t t e r  problem consists of two steps. Firs t ,  we show 

by a trivial argument thzt the minimal dimension can be bounded from 
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below by an examination of the Hankel array defined by the partial 

sequence. Second, and this is rather surprising, we show that the 

lower bound can be actually attained. For further details, especially 

the characterization of equivalence classes of the minimal partial 

realizations, see KALMAN [ 1969~ and 1970bI. 

(9.3) . DEFINITION. By the Hankel array lI(Ir) of ,a partial . 

sequence A we mean that r X r block Hankel matrix whose (i, j) th 
=r 

- if i + j - 1 < r and undefined otherwise. block is Ai+ - = 

. In. other words, the Hankel array of a partial sequence A =T. 

consists of block rows and columns made up of subsequences 

A . . ., A; (l'<,p _< r) of A and blank spaces. 
P' - - =r 

(9-4) PROPOSITION. &e-J no(-4 =r ) bg the number of rows of the 

Hankel array of A which are linearly independent of the rows 
. - - a  . . .=r 

abave them. Then the dimension of &realization of A is at least =r 

n (A 1. 0 =r 

PROOF. The rank of'% Haiikel matrix of an infinite 

sequence A_ is.a lower bound on the dimension of ~IJY realization - 
d , - by Progosition (8.4 ). By Proposition (9.2), it suffices 

. . 
-to consider assuitable exten~i9p'A - - of A =r . . This implies "filling 
in" the blank spaces in the Hankel array of A . Regardless of how =r 

.&A ,T Gr ) 'is f ix led  in, the rank of the resulting' r X r block IIankel • : 

' matrix is bounded from below by no($). 
By the block symmetry of the Hankel matrix, we would expect 

to be able to determine n0(4r) by an analogous examination of the 
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columns o f  the  Hankel array of , - thereby obtaining the same . 

lower bound. This i s  indeed true.  We prefer not t o  give a d i rec t  

proof, since the r e su l t  w i l l  follow as a corollary of the Main 

meorem (9.7). 

The c r i t i c a l  f a c t  i s  given by the  

MAIN LENMA. For a p a r t i a l  sequence - _Ar define: 

sequence 

ht (br) = smallest integer such that  f o r  kt > A t  every 

row of H ( A  - =r ) i s  l inear ly  dependent on the 

rows above it. 

hl'($) = smallest integer such tha t  f o r  k" > A" every 

column i n  the  k-th block column of E.(_A ) - -r 
i s  l inea r ly  dependent on the columns t o  the  

l e f t  of it. 

Every p a r t i a l  sequence A may be extended t o  an i n f i n i t e  -r 

i n  at l e a s t  one way such tha t  the condition 

r a n k g  (A) = n ( A )  fo r  a l l  @ >  Al(&), V >  A " ( A )  -p, v = 0 =r =r 

i s  sat isf ied.  

.PROOF, The existence of the numbers A t .  A" i s  t r i v i a l .  

It suffices t o  show, fo r  a rb i t r a ry  r, how t o  se lec t  AHl i n  
. .  

such a way tha t  the numbers A',, A", ' -and n remain constant. 
0 

Consider the  f i r s t  row of -and exmine i n  t u n  a l l  the 

f i r s t  rows of the  f i r s t ,  second, third,  . . ., h?th  block rows i n  

) . I f  thie first row of the  f i r s t  block row i s  l inear ly  depen- 

dent on the rows above it ( tha t  is, 0), we f i l l  i n  the f i r s t  ~ O W  
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of Aptl using th i s  linear dependence ( that  is,  we make the f i r s t  

row of AH a l l  zeros). This choice of the f i r s t  row of Afil 

w i l l  preserve linear dependencies for  the first row of every block 

row below the second block row, by the definition of the Hankel 

pattern, I f  the f i r s t  row i n  the f i r s t  block row is l inearly 

independent of those above (that is,  contributes 1 t o  no(A ) ), =r 

we pass t o  the second block row ana repeat the procedure. Eirentually 

the f i r s t  row of some block row w i l l  become linearly dependent on 

those above it, except when A' = r; i n  that  case, choose the first 

row of AHl t o  be l inearly dependent of the first rows of 

, . . A Repeating t h i s  process for  the second, third, . . . rows r 

of each block ro~fi, eventually A 
pt1 

i s  detefmined without increas- 

ing A' or no. 

To complete the proof, we must show that  the above definition 

Of Ar+l also preserves the value of A'! That is, we must show 

that  no new independent columns are  produced i n  the Hankel array of 

A when AHl =r i s  f i l l e d  in. This i s  verified immediately by noting 

that  the definition of Artl implies the conditions 

rank H - 
=r, 1 - rank !iHl,l~ 

ra* gr-l, 2 = rank H =r, 2' 

rank IE =  rank^ - =l, r =2, r - ra* gl, r+l- 

--------------- 
-- 

*Of course, uov linear depenaence i n  the f i r s t  step does not 
imply that  the corresponding row of A*l. w i l l  be a l l  zeros. 
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With the a i d  of t h i s  simple but subtle observation, the  problem 

i s  reduced t o  tha t  covered by the Main Theorem (8.21) of Section 8. We have: 

MAIN THEOFEM FOR MIElIMAL PARTIAL FE&IZATIONS.* 
Ar - 

be a p a r t i a l  sequence. Then: - 
(3.) Every minimal realization of A has dimension n (&r). =r 0 

( i i )  A l l  minimal realizations m y  be determined with the  a id  

of B. L. Hots f o m l a s  (8.17-18) - pi th  A' = A ~ ( A  ) and A" = A"(A ) =r =r 

as given by Lemma (9.5) . 
( i i i )  If r > - At(&) + A?(A ) then the minimal real izat ion =r 

i s  unique. Othersiise there are e s  ~i;;zny-lhinirml r2z l i ze t ims  as 

there are extensions of A satisfying (9.6). 
=r 

PROOF. By the Main Lemma (9.5), every p a r t i a l  sequence A =r 

has a t  l eas t  one i n f i n i t e  extension which preserves At ,  A" and 

n . So we can apply the  (8.21) of the preceding section. 
0 

It fo l lo~?s  t h a t  the  minimal, p a r t i a l  real izat ion i s  unique i f  

r 2 - h t ( ~  ) + A"(A ) ( the At(A ) . +  An(A ) + 1 Hankel matrix can be =r =r =r =r 

f i l l e d  i n  completely with the available data); i n  the contrary case, the 

m i n i m a l  extensions w i l l  depend on the m r a e r  i n  which the matrices 

* * s  *At+R, have been determined (subject t o  the requirement 

In  v i e w  af the  theorem, we are jus t i f ied  i n  cal l ing the integer 

no( P, ) the dimension of A . 
=r --.. -.s.z-*- =r 

*A siailar resu l t  was obtained shultaneously and independently 
by T. . Tether (stanford d5.s sertz%ion, 1969) . 
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REMARK. The essential point is that the quantities no, 

At, and A V  are uniquely determined already from partial data, 

irrespective of the possible nonuniqueness of the minimal extensions 
- 

of the partial sequence. We warn, however, that this result does 

not generalize to all invariants of the minimal realization. For 

instance, one cannot determine from A how many cyclic pieces a =r 

minimal realization of A will have: some minimal realizations =r 

may be cyclic and others may nbt [ ULMAN W O ' J ]  

Finally, let us note also a second consequence of the Main 

Theorem: 

COROLLARY. Suppose n (A ) is the number of independent 1 =r 

columns of the Hankel array of A (defined analogously with =r 

PROOF. If %(A ) > n (A ) then, using the Main Theorem, =r o =r 

we get a contradiction to the fact that the rank of any Hankel matrix 

of an infinite sequence is lower bound for the dimension of any reali- 

zation (~roposition (8. 4)). If y(~2,) - < n (A ) then extending A 
0 =r =r 

to any lSAl+x,l we contradict the fact that rank IIAlyA,, is at least 

equal to  no(^ ). =r 

In other words, the characteristic property of rank, that 

counting rank by row or column dependence yfelfs  iden6ical results, 

is preserved even for incomplete Hankel arrays. 

It is useful to check a simple case which illustrates some of - - - v v n  
the technicalities of the proof of the Main Lemma. ' 

(9.k) EXAMPLE. The dimension of (0, 0, . . ., 0, A ~ )  is precisely 

r X p, where 'p = rank A- and 1\t  = A" = r. - 
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10. GENERAL THEORY OF OBSERVABILITY 

In this concluding section, we wish to discuss the problem of 

observability in a rather general setting: we will not assume 

linearity, at least in the beginning. This is an ambitious program 

and leads to many more problems than results. Still, I think it is 

interesting to give some indication of the difficulties which are 

conceptual as well as mathematical. This discussion can also - 

serve as an introduction to very recent research [ K A ~  1969a, 

Lm- 
T ~ o a ]  on the observability problem in certain classes of nonlinear 

systems. 

The motivation for this section, as indeed for the whole theory 

of observability, stems from the writerls discovery [IWXAN 1960~1 

that the problem of (linear) statistical prediction and filtering 

can be formulated and resolved very effectively by consistent use 

of dynamical concepks and methods, and that this whole theory is a 

strict dual of the theory of optimal control of linear systems with 

quadratic Lagrangian. For those who are familiar with the standard 

classical theory of statistical filtering (see, for instance, YAGLOM 

C19621), we can summarize the situation very simply by saying that 

Wiener-Kolmogorov filter 

+ theory of finite-dimensional linear dynamical systems 
= Kalman filter. 

For the latter, the original papers are [KALMAN 1960a, 1963a] and 

l KAIMAN and BUCY' 19611 . 
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The reader interested i n  further de ta i l s  and a m~dern exposition i s  

referred especially t o  the monograph of K A W  [i.96913]. 

We sha l l  examine here only one aspect of this theory (which 

does not involve srrjr stochastic elements) : the s t r i c t  formulation 

of the "duality principle" between reachabili ty and observability. 

This principle was formally s tated fo r  the  first time 5y lCALMAN [ 1 9 6 0 ~  I, but 

the  pertinent discussion i n  t h i s  paper i s  limited t o  the  l inear  case and 

i s  somewhat ad-hoc. Aided by research progress since 1960, it i s  

now possible t o  develop a completely general approach t o  th? ltduality 

principle1'. We s h a l l  do t h i s  and, as a by-product, we sha l l  obtain 

a new and s t r i c t l y  deductive proof of the  principle i n  the now 

- 
class ica l  l inear  case. 

We sha l l  introduce a general notion of the "dual" system, and 

use it t o  replace the problem of observability by an equivalent 

problem of reachability. I n  keeping with the point of view of the  

ea r l i e r  lectures, we sha l l  view a system i n  terms of i t s  input/output 

map f and dualize f (rather than z). The cons t ruc t ib i l i ty  

problem w i l l  not be of d i rec t  interest ,  since i t s  theory i s  similar 

t o  tha t  of the  observability problem. 

Let R, I' be the same s e t s  as defined i n  Section 4 and used 

from then on. We assume tha t  both R and I' a re  K-vector spaces 

(K = arbi t ra ry  f i e ld )  and r e c a l l  the defini t ion of the s h i f t  

operators o and o on R and r (see (3..10)). We denote n 
both s h i f t  operators by z but ignore, u n t i l  la te r ,  the  KE zl-  

module structure on 52 and I'. 
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By a constant (not nec,essarily linear) input/output map 

f: R +I' we shall mean any map f which commutes with the shift 

&erators, that is, 

Let us now formulate the general problem of this section: 

(10.1) P R O B W  OF OBSERVABILITY. Given an input/output map f, 

its canonical realization C, and an input sequence V E R applied 

after t = 0. Determine the state x - of C t = 0 - from 

the knowledge of the output sequence of C after t = 0. 

This problem cannot be solved in general! To see this, recall 

that the state set Xf of f may be viewed as a set of functions 

since cut is Nerode-equivalent to o, iff 

f(cu'o.)(l) = f(Luo.)(l) 

Giving V E R and the corresponding output sequence amounts to 

giving various values of f (cue ) (1) (namely those corresponding 

2 
to the sequences @, Vr, zV + V . V,  z z V . and r r-1' 

it may happen that these substitutions do not yield enough values of 

the function f(cuo*)(l) to determine the f in~t_ion itself. This 

sitwtion has been recognized for a long time in automata theory, 
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where, i n  an almost self-explanatory terminology, one says tha t  

"Z i s  i n i t i a l - s t a t e  determinable by an i n f i n i t e  multiple experiment 

(possibly i n f i n i t e l y  many diffzrent  V 1  s) but not necessarily by a 

single experiment (single V chosen at  w i l l )  . I f  See MOORE [ 195 6 I . 
The problem i s  f'urther complicated by the f a c t  t h a t  it may make a 

difference whether or not we have a f ree  choice of V. K A W ,  

FALB, and ARBIB [1969, Section 6.3) ] give some re la ted  comments . 
A f'urther d-ifficulty inherent i n  the preceding discussion i s  

tha t  the problem i s  posed on a purely set-theoretic l eve l  and does 

not lend i t s e l f  t o  the introduction of more refined s t ruc tura l  

assumptions. We sha l l  therefore reformulate the problem i n  such 

a way a s  t o  focus a t ten t ion  on determining those properties of the 
I 

i n i t i a l  s t a t e  which can be computed from the  combined knowledge of 

the input and output sequence occurring a f t e r  t = 0. 

For simplicity, we sha l l  f i x  the value of V at.. 0 (no loss  of 

generality, since f i s  not l inear ) .  Then the output sequence 

resul t ing from x a f t e r  t = 0 i s  given simply a s  f(w), where 

We sha l l  use the circwtflex t o  denote cer ta in  classes of 

f'unctions from a s e t  i n to  the f i e l d  K. For the moment, t h i s  

c lass  w i l l  be the  c lass  of a l l  functions. Thus 

? = ( a l l  functions l? -t K) . 
A 

An element y of - f  i s  simply a " ~ u l e "  ( i n  practice, a computing 

algorithm) which assigns t o  each possible output seq.1ence y i n  I' 
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a number i n  the f i e l d  K. I f  y resulted from the s t a t e  x = [mIf, 

then 

A 

gives the value of a cer ta in  f'unction i n  Q and, by defini t ion of 

h 
the  state,  a l so  the  value of a cer ta in  function i n  X. This suggests 

the 

DEPiNITION. An element hx E 2 i s  an 03servable costate 

i f f  there is  a j;; E P such tha t  we have ident ical ly for  a l l  

In  other words, no matter what the  i n i t i a l  s t a t e  x = ["If is, 
A 

the value of x at x can always be determined by applying the 
A 

rule Y;; t o  the  output sequence f ( m )  resul t ing from x. Note, 

carefully, t ha t  t h i s  defini t ion subsumes ( 5 )  a fixed choice of the 

c lass  of f'unctions denoted by the circumflex, and ( i i )  a fixed input 

sequence,after t = 0 (here V = 0). For cer ta in  purposes, it . . 

may 5e necessary t o  generalize the defini t ion i n  various ways 

[KAMAN 1 9 0  a], but here we wish t o  avoid a l l  unessential complica- 

tions. - 
f. 

According t o  Definition (10.2), we sha l l  see that a system i s  

completely observable i f f  every costate i s  observable. This agrees 

with , the point of view adopted ea r l i e r  (see Section 4) i n  an ad-hoc 

fashion. Also, the  vague requirement t o  "determine xtl used i n  
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(10.1) i s  now replaced by a precise notion which can be manipulated 

(via the actual definition of the circumflex) t o  express limitations 

on the algorithms that  we may apply t o  the output sequence of the 

system. 

The requirement "every costate i s  observable" can be often 

replaced by a much simpler one. For instance, i f  X i s  a vector 

space, it i s  enough t o  know that  !'every linear costate i s  observable1' 

or even just that  "every element of some dual basis i s  an observable 

costate"; i f  X i s  an algebraic variety, it i s  natural t o  interpret 

"complete observa'bility" as  "every element of the coordinate ring of 

X i s  an observable costate1' [ KALMAN .1970a]. 

W e  can now carry out a straightforward udualization" of the 

setup involved i n  the definitior, of the input/output map f :  R +T'. 

First, we adopt (again with respect t o  a fixed interpretation of the 

circumflex) : 

(10.3) DEFINITION. The dual of an input/output map f : G! + T' 
- .  

i s  the map 

Note that  i s  well-defined, since the circumflex means the class 

of - a l l  f'unctions. 

A s  t o  the next step, we wish t o  prove that  constancy i s  inherited 

under dualization. To do this,  we have t o  induce a definition of the 
. A 

shif t  operator on I' and c. The only possible definitions are the 

obvious ones: 
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-I : -Both of these new s h i f t  operators w i l l  be denoted by z . 
The reason f o r  t h i s  notation w i l l  become c lear  l a t e r .  

Now it i s  easy t o  verify: 

h 

(10.4) PROPOSITION. - If f i s  constant, so i s  f .  

PROOF. We apply the  defini t ions i n  suitable sequence: 

( z )  (m) = ( z-'03) ( f (m) ) 

= ;(z-f(m)) 

= ;(f(z.m)) 

h A 

= f(r)(z-m) 

= (z - l -? ( i ) )  (m) 

(def. of ?), 
(def. of up), 

( f  i s  constant), 

(def. of ?), 

(def. of u6), 

h 

and so we see tha t  f commutes with z whenever f does. 

A 

A t  t h i s  stage, we cannot as yet view f as the  input/output map 

h 

of a dynamical system because concatenation i s  not yet defined on r, 
h 

and therefore i s  not yet  a properly defined "input sett1. 

I n  other words, it i s  necessary t o  check tha t  the notion of time i s  

a lso inherited under dualization. I n  general, t h i s  does not appear 
h 

t o  be possible without some strong l imitat ion on the c lass  I". Here 

we sha l l  look only.at  the  simplest 
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A 

(10.5) HYPOTHESIS. Every f'unction y - i n  2 s a t i s f i e s  the 

A 

finiteness condition: There i s  an integer I F ]  (dependent on r) 

such tha t  for  a l l  y, 6 E I' the  condition 

implies 

= ?(6). 

I n  other words, we assume t h a t  the value of each rh at  y 

i s  uniquely determined by some f i n i t e  portion of the output sequence 

Y 

Assuming (10.5)) it i s  immediate t h a t  f admits a concatenation 

multiplication which corresponds (at l e a s t  intui t ively)  t o  the  usual 

one defined on Q: 

We can now prove the expected theorem, which may be regarded 

as the precise form of the lldualityll principle: 

(10.7) THEOREM. Let f b e a n a r b i t r a r y c o n s t a n t  input/output 

map and f i t s  dual. Suppose. f'urther tha t  (10.5) - holds. - Then 
C 

each observable costate of f ( re la t ive  t o  ? satisf'yinq (10.5)) 
A 

may be viewed as a reachable s t a t e o f  f, and conversely. 

PROOF. F i r s t  we determine the  Nerode equivalence classes  on 

A 

I' induced by h f .  .By defini t ion 



n 

for  a l l  2 E r. Npw 3 i s  l inear  (!); i n  fact ,  d i rec t  use of 

the def ini t ion o f  2 and (10.6) gives 

So ? o f  and gof are  equal a s  elements 31 i: =hey define the  

s m e  observable ~ o s t a t e .  Tn fancier language, the asstgnment 

i s  well  defined and const i tutes  a bi ject ion between the  reachable 
A 

s t a t e s  of f and those costates of f which a re  observable 

A re la t ive  t o  the  c lass  . 
Thus (10.5) i s  a sufficient. condition for  bhe & ~ a P i t y  principle 

A 

t o  hold. However, t h e  f a c t  t ha t  the canonical rea l iza t ion  ~f f i s  

completely reachable i s  not quite the  same a s  saying tha t  the canonical 

real izat ion of f i s  completely observable because the . la%ter  depends 
L. 

on the choice of I' and therefore i s  not an in t r ins i c  property of f .  

Moreover, Theorem (10.7) does not give any indication how "big" Xi: i s  

and it may cer tainly happen tha t  the  observability problem for  f i s  

r m h  more d i f f i c u l t  'than the reachabili ty problem. These matters w i l l  

be i l l u s t r a t e d  later by some examples. 

Now we deduce the or ig ina l  form of the dual i ty  principle from 

Theorem (10.7). The essent ia l  point i s  t ha t  (10.5) holds automati- 

ca l ly  as a r e su l t  of l inear i ty .  

New defini t ion of the function class:  l e t  the  circumflex denote 

the c lass  of a l l  K-linear fimctions. ( A l l  the underlying se ts  ssitb the 

K-vector spaces, so the defini t ion makes sense. ) 
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The following f a c t s  a re  well known: 

(10.9) PROPOSITION. - Let * denote duality i n  the sense of 

K-vector spaces. Then: 

Now we can s t a t e  the 

(10.10) MAIN THEOREM. Suppose f 2 K-linear, constant, f in i t e -  

dimensional. Suppose further  tha t  A means K-linear duality.  Then: 

h 

(i) f i s  - K-linear and constant, t ha t  is ,  a K[Z-'1-homomorphism 

(and therefore w r i t t e n s  F )  and finite-dimensional. 

( i i )  The reachable s t a t e s  of P are  isomorphic with the  

K-linear dual of ' X f ;  hence every costate of Xf i s  observable. 

PROOF. The fac t  tha t  I' i s  K-linear implies, by (10 .3)~  

h 

t ha t  f i s  K-linear; the constancy of f always implies tha t  of 
h A 

f, by Proposition (10.4). (caution: f i s  & the K[z]-linear 

dual of the  K[z]-homomorphism f,  and the construction given here 

cannot be simplified. See Iiemark (4.26~) . ) 
To prove the  second part, we note tha t  by Proposition (10.9) 

h 

Hy-pothesis (10.5) holds and thus f = P" i s  a well-defined input/output 

map-of a dynamical system. We mst prove tha t  the  reachable s t a t e s  

of F are  isomorphic with $, t he  K-linear dual of Xf. This 

amounts t o  proving tha t  the  K-vector space of functions 



i s  isomorphic with the  K-vector space 9. It suff ices  t o  prove 

d? the  K-vector space generated by the K-linear f'unctions 

(10.n) (A: x o [hf(zi-x)] 3' 
i = 0 , 1 ,  ... and j = 1, ..., m} 

i s  isomorphic with xX~.  Suppose that,  for  fixed x, every h(x) = 0. 

Then x = 0, by defini t ion of the Nerode equivalence relat ion induced 

by f ( r e c a l l  here the  discussion from Section 3 ) .  Since X i s  f 

finite-dimensional by hy-pothesis, it follows from t h i s  property of 

the  f'unctions (A) t h a t  they generate x:. Obviously, din: X* = dim X 
f f' 

so t h a t  everything i s  proved. 

In  other terns, the  f a c t  t h a t  f = K[z]-homomorphism together 

with the appropriate defini t ion of A implies tha t  

i s  a K[ z-'1 -homomorphism. Since (10.5) holds, we can f nterpret 
h 

f i n  a system-theoretic way, as follcxs: the  output of the dual 

h 
system at  t = - k due t o  input r i s  given by the  assignment 

which i s  a l inear  function defined on the  k-th term of the input 

sequence. I n  fact,  we have 
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(10.12) RFSICLRK. It i s  essent ial ly  a consequence of Proposition (10.9) 

t h a t  h f  turns out t o  be the same kind of algebraic object a s  f .  Note, 

however, t ha t  

under dual i ty  the input and output terminals are  

interchanged and t i s  replaced by -t (hence z 

I n  terms of the p i c t o r i a l  defini t ion of a system, t h i s  

statement simply amounts t o  I1reversing the directions of the arrowsv, 

which i s  the "right1' way t o  define duality i n  the most general 

mathematical context, namely i n  category theory. We would expect 

t h a t  the duality principles of system theory w i l l  eventually become 

a par t  of t h i s  very general dual i ty  theory. This has not happened 

yet  beczuse the correct categories t o  be considered i n  the  study of 

dynamical systems have not yet  been determined. It is  l ike ly  tha t  

eventually mny different  categories w i l l  have t o  be looked at i n  

studying dynamical problems. 

We sha l l  now present an example which should help t o  in terpre t  

the  previous resul t s ;  We emphasize, however, t ha t  the theory sketched 

here i s  s t i l l  i n  a very rudi.mentary form. 

(10.13) EXAMFLF,. Consider the  system C defined by 



with X = U- = Y = R - mod 1, i.e., the in te rva l  [O, 1). ( 1  i s  t o  - 

be thought of as  ident i f ied  with 0.) We l e t  u ( t )  = 0. We view 

x through i t s  binary representation 

It is  clear  from the defini t ion of the  system tha t  the output 

sequence due t o  any x i s  precisely 

. -. 

If x i s  i r rat ional ,  i n f i n i t e l y  many terms are  needed t o  ident i fy  

it. Consequently, the x ' s  a r e  isomorphic with the Nerode equiva- L .  

lence classes induced by fz. So C- cannot be .reduced. 

- - Relative t o  'IA = -flmctions", everyccostate of f z  i s  

observable, provided tha t  Hypothesis (10.5) i s  - not sa t i s f ied .  I f  

it is, then only those costates defined on fixed-length rat ionals  

Bre  observable (more precisely, these s r e  functions which depend only 
A 

on a fixed f i n i t e  subset of the Sk(x) 1 S) . Thus: e i ther  f - does 

not define a dy-nmical system or not a l l  costates a re  observable. 

Now l e t  us replace the se t  [O, 1) by i t s  intersect ion 

with the rat ionals .  It i s  c lear  thz t  there i s  now a f i n i t e  algorithm 

fo r  determining x: we simply apply the r e su l t s  of p a r t i a l  real iza-  

t i o n  theory of the previous section. (we take K = Z and the 
=2 

problem i s  t o  express x from (tl(x),  . . ., E2(x)0 a s  a r a t i o  

of polynomials i n  Z$[2]--whlch i s  always possible since e&ch x 

i s  rat ional . )  However, x i s  not lleffectively compt&blefl i n  <he 



strict sense since there is no way of knowing when the algorithm 

A 
has stopped. In other words, given an arbitrary costate x -there exists 

. . 
A A 

no - fixed rule y;; such that the application of y~ to yx gives 
X 

A A< 

x(x) for all x. On the other hand, substituting into x the 

results of the partial-realization algorithm will give an approxi- 

mation to the value of :(X) which always converges in a finite 

(but a priori unknown) number of steps as more values of the output 

sequence are observed. In short, the costate-determination algorithm 

-ffis certain pseudo-random elements in it and therefore cannot be 

described through the machinery of deterministic dynamical systems. 

(IS there some relation here to the conceptual difficulties of 

Quantum Mechanics? ) 
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11. HISTORICAL COMMENTS 

It is not an exaggeration to say that the entire theory of linear, 

constant (and here, discrete-time) dynamical systems can be viewed as 

a systematic development of the equivalent algebraic conditions (2.8) 

and (2.15). 

Of course, the use of modules (over KEzI) to study a constant 

square matrix (see (4.13)) has been "standard" since the 19208s under 

the influence of E. NOETHER and especially after the publication of 

the Modern Algebra of VAN DER WAERDEN. Condition (2.15), by itself, 

must be also quite old. For instance, GANTMAIMER [1959, Vol. 1, p. 2031 

att~ibutes to KRYLOV [1931] the idea of computing the characteristic 

polynomial of a square matrix A by choosing a random vector b and 

commting successively b, Ab, A%, . . . until linear dependence is 
obtained, which yields the coefficients of det (zI - A).  h he method 
will succeed iff XA is cyclic with generator g.) However, the 

merger of (4.13) with (2.15), which is the essential idea in the alge- 

braic theory of linear systems, was done explicitly first in KAINAN [1965b]. 

We shall direct our remarks here mainly to the history of conditions 

(2.8) and (2.15) as related to controllability. See also earlier 

comments in XALMAN [1960c, pp. 481, 483, 4841 and in KAIXAN, HO, and 

IWENDRA [1963, pp. 210-2121. We will have to bear in mind that the 

development of modern control theory cannot be separated from the develop- 

ment of the concept of controllability; moreover, the technological 

problems of the 1950's and even earlier had a major influence on the 

genesis of mathematical ideas (just as the latter have led to many 

new technological applications of control in the 19601s). 
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The writer developed the mathematical definition of controllability 

with applications to control theory, during the first part of 1959. 

(~gpublished course notes at Johns Hopkins University, 1958/59. ) These 

first definitions were in the form of (2.17) and (2.3). Formal presenta- 

tions of the results were made in Mexico Citg (~e~tember, 1959, see 

KALMlLN [1960b]), University of California at Berkeley (~pril, 1969, see 

K .  [1960d]), and Moskva (~une, 1960, see KAZlMAN [1960c3), and in 

scientific lectures on many other concurrent occasions in the U.S. As 

'far as the writer is aware, a conscious and explicit definition of 

controllability which combines a control-theoretic wording with a 

precise mathematical criterion was first given in the above references. 

There are of course many instances of similar ideas arising in related 

contexts. Perhaps the comments below can be used as the starting point 

of a more detailed examination of the situation in a seminar in the 

history of ideas. . 

The following is the chain of the writer's own ideas culminating 

in the publications mentioned above: 

(1) In KALMAN [1954] it is pointed out (using transform methods) 

that continuous-time linear systems can be controlled by a linear 

discrete-time (sampled-data) controller in finite time .* 
--------------- 

*It is sometimes claimed in the mathematical literature of optimal 
control theory that this cannot be done with a linear system. This is false; 
the correct statement is "cannot be done with a linear controller producing 
control functions which are continuous (and not merely piecewise continuous I ) 
in time." Such a restriction is completely'irrelevant from the technological. 
point of view. As a matter of fact, computer-controlled systems have been 
proposed and built for many years on the basis of linear, time-optimal control. 
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(2) Transposing the result. of KllLMAN [ 1954 I from transfer f'unctions 

to state variables, an algorithm was sketched'for the solution of the 
4 

discrete-time time-optimal control of systems with bounded control and 

linear continuous -time dynamics . [KAIM.N, 1957 ] 

(3)  As a popularization of the results of the preceding work, the 

same technique was applied to give a general method for the design of 

linear sampled-data systems by KALMAN and BERTRAM [1958]. 

Some background comments concerning these papers are appropriate: 

(1) The ideas and method presented in KALMAN [1954] descend 

directly from earlier (and very well known) engineering research on 

time-optimal control. (The main references in KIIl;MAN [19541 are: 

McDONALD [ 19501, HOPKIN 119511, BOGNER and KAZDA [ 1954 1, as well as a 

research report included in ~~ [1955]. ) Although the results of . 

KALMAN [1954] on linear time-optimal control were considered to be new 

when published, it became clear later that similar ideas were at least 

implicit in 0L;DENBOURG and SARTORIUS [1951, $90, p. 2191 and in TSYPKINI s 

work in the early 19501s. The engineering idea of nonlinear time-optimal 

control goes back, at least, to DOLL [1943] and to OLDENBURGER in 1944, 

although the latter's work was unfortunately not widely known before 1957. 

During the same time, there was much interest in the same problems in 

other countries; see, for instance, FELOBAUM [1953] and UTTLEY and HAMMOND 

[1953]. Mathematical work in these problems probably began with BUSHAlITls 

dissertation [1952] in which, to quote from KAISm [1955, before equation 

(40) 1, '' . . . :. [it was] rigorously proved that the intuition which led to 
the formulation of the [engineering] theory [quoted above] was indeed 

correct. " TSIEN1 s survey [ 19541 contains a lengthy account of this state 
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of affairs and was ready by many.-. We emphasize': none of this 

extensive literature contains even a hint of the algebraic considerations 

related to controllability. 

(2-3) The critical insight gained and recorded in KA.LlIAN [1957] is 

the following: the solution of the discrete-time time-optimal control 

problem is equivalent to expressing the state as a linear combination 

of a certain vector sequence (related to control and dynamics) with 

coefficients bounded by 1 in absolute value, the coefficients being 

the values of the optimal control sequence. The linear independence 

of the first n vectors of the sequence guarantees that every point 

in a neighborhood of zero can be moved to the origin in at most n 

steps (hence the terminology of "complete controllabilityw) ; and the 

condition for this is identical with (2.17) (stated in KALMAN [1957] 

and KAIMAN and BERTRAM [1958] only for the case det F # 0 and m = 1). 

A thorough discussion of these matters is found in KlUMW [lgfhc; see 

especially Theorem I, p. 4851. A serious conceptual error in KllLMAN 

[ 1957 1 occurred, however, in that complete controllability was not 

assume3, as a hypothesis for the existence of time-optimal control law, 

but an attempt was made to show that the controllability is almost 

always conplete [ L e m  11. In fact, this lemma - is true, with a small 

technical modification in the condition. Only much later did it become 

clear (see the discussion of Theorem D in the ~ntroduction), however, 

that a .dynamical' system is always completely: controllable (in the nonconstant 

case,. completeu reachable) if it is derived from an exbernal description. It was 

this difficulty, very mysterious in 1957, which led to the development 
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of a formal machinery fo r  the  defini t ion of cont ro l lab i l i ty  during the  

next two years. The changing point of view i s  already apparent i n  

KALMAN and BERTRAM 119581; the  unpublished paper promised there  was 

delayed precisely because the  algebraic machinery t o  prove Theorem D 

was out of reach i n  1957-8. Consult a l so  the  findings of the biblio- 

grapher EiUDOLF [ 19691 . 

I N  SUMblARY: under the  stimulation of the  engineering problems 

of minimal-time optimal control, the  researches begun by KAI;MAN [1954, 

1957 1 and IWA14N and BERTRAM [ 1958 1 eventually evolved intoi what has 

come t o  be cal led the mathematical theory of cont ro l lab i l i ty  (of l inea r  

systems) . 

Beginning about 1955, end stimulated by the  same engineering 

3 1  P0NTRYAGIN.and his: school i n  the USSR developed t h e i r  

mathematical theory of optimal control around the  celebrated "Maximum 

Principle".    hey were well  aware of the survey of TSIEN [19541 

mentioned - above, and referenced it both i n  English and i n  the  Russian 

t ranslat ion of 1956.) We now how tha t  9- theory of control, regard- 

l e s s  of i t s  particular mathemtical. style, must contain ingredients 

related t o  control labi l i ty .  So it i s  interest ing t o  examine how 

expl ic i t ly  the cont ro l lab i l i ty  condition appears i n  the  work of PONTRYAGIN 

and re la ted  research. 

GAMKRELIDZE [1957, $2; 1958 $1, $21 c a l l s  the  time optimal control 

problem associated with the system 



"nondegeneratetr i f f  b i s  not contained i n  a proper A-invariant 

subspace of R ~ .  He notes immediately t h a t  t h i s  i s  equivalent t o  

(11.2) det (b, Ab, ..., nn%) jl 0 

(i. e., the  special  case of (2.8) for  m = 1) . He then proves : & 

the "degenerate" case the  problem e i ther  reduces t o  a simpler one or  

the motion cannot be influenced by the  control function u( ) . A l l  

t h i s  i s  very close t o  an expl ic i t  def ini t ion of control labi l i ty .  

However, i n  discussing the  general case m > 1, GAMIWZLIDZE [ 1958, 

$3, Section 1 1  defines "nondegeneracy" of the  system 

as  the  condition 

(11.4) det (bi, Abi, . . ., A"-%. 1 ) # 0 f o r  every column bi E B, 

but he does not show tha t  t h i s  generalized condition of "nondegeneracy" for  (11.3) 

inher i t s  the in teres t ing  characterization poved for  "nondegeneracy" 

i n  the case of (11.1). I n  fact,  condition (11.4) i s  much too strong 

t o  prove th i s ;  the  correct condition i s  (2.8), t ha t  is ,  complete 

control labi l i ty .  I n  other wards, i n  GP!dKRELIDZE1 s work (11.4) plays 

the role  of a technical  condition for  eliminating "degeneracy" (actually, 

lack of uniqueness) from a part icular  optimal control problem and i s  

not ,expl ici t ly  re la ted  t o  the more basic notion of complete control labi l i ty .  

Neither CtAMI(REL1Dm nor PONTRYAGIN [1958] give an interpretat ion of 

( l l .4 )  as  a property df the dynamical system (11.3), but employ (11.4) 

only i n  re la t ion  t o  the  part icular  problem of time-optimal control. See 



also KALMW [1960~, p. 4841. A siuular point of view is taken by 

U W  [1960]; he calls a dynamical system (11.3) satisfying (2.8) 

"proper" but then goes on to require (ll.4) (to assure the uniqueness 3 
5 

C 
of the time-opt imal controls and calls such systems llnomal't. 

The assmtion of some kind of "nondegeneracy" conditio~ yas - 

unavoidable in the early phases of research on the time- 

optimal control problem. For example, ROSE [1953, pp. 39-58] examines 

I this problem for (11.1) ; by defining "nondegeneracyt1 [p. 411 by a 
C 
iondition equivalent ot (11.2), he obtains most of GAMKEELIDZE 1 s results - 

I in the special case when A has real eigenvalues [~kreorem 121. ROSE 

uses determinants closely related to the now familiar lemmas in cantrol- 

kbility theory but he, too, fails to formulate controllability as a 

concept independent of the time-optimal control problem. 

b A similar situation exists in the calculus of variations. The 

m 
to a kind of classification of controllability properties or' nonconstant 
r 
=systems. In fact, the standard notion of a normal family of extremals 

I of the calculus of variations is closely related to condition (11.4), suitably generalized via (2.5) to nonconstant systems.* Normality is 

I used in the calculus of variations mainly as a 'hondege;eracl' condition. 

is importan: to note that the "nondegeneracy" conditions a 
lemployed in optima.3 cori-cru~ and the calculus 01 varla-clons play mainly the 4 

t ole of eliminating annoying %echnicalities ar-d simplieing proofs. 
- .  

-------------- 
*The use of the word "normal1' by IaSALU [ 19601 for (-11.4) is only 

accidentally coincident with the earlier use of the "normal" in the - 
c u l u s  of variations 
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With suitable formulation, however, the basic .:esults of time-optimal 

control theory continue to hold without the assumption of complete 

controllability. The same is not true, however, of the four kinds of 

theorems mentioned in the Intorduction, and therefore these results 

are more relevant to the story of controllability than the time-optimal 

control discussed above. 

There is a considerable body of literature relevant to controllability 

theory which is quite independent of control theory. For instance, the 

treatment of a reachability condition in partial differential equations 

goes back at least to CHOW [1940] but perhaps it is fairer to at+ribute 

it to Caratheodoryts well-known approach to entropy via the nonintegra- 

bility condition. The current status of these ideas as related to 

controllability is reviewed by WEISS [1969, Section 91. An independent 

and very explicit study of reachability is due to ROXIN [19601; unfor- 

tunately, his examples were purely geometric and therefore the paper 

did. cot help in clarifying the celebrated condition (2.8) . The 
Wronskian determinant of the classical theory of ordinary differential 

equations with variable coefficients also has intersections with control- 

lability theory, as pointed out recently with considerable success bp- '4 
SILVERMAN 119661. Vany problems in control theory were misunderstood 

or even incorrectly solved before the advent of controllability theory. 

Some of t'nese are mentioned in KALMlLN [1963b, Section 91. For relations 

with automata theory, see ARBIB [19651. 

Let us conclude by stating khe wrzter's 9m currena! position as 
L , P I m s -  

to the significance of controllability as a subject in mathematics: 
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(1) Controllability is basically an algebraic concept.   his 

clah applies of course also to the nonlinear controllability results 

obtained via the Pfaffian method.) 

(2) The historical development of controllability was heavily 

influenced by the interest prevailing in the 1950's in optimal control 

theory. Ultimately, however, controllability is seen as a relatively 

minor component of that theory. 

. (3) Controllability as a conceptual tool is indispensable in 

the discussion of the relationship between transfer functions and 

differential equations and in questiohs relating to the .four theorems 

of the Introduction. 

(4) The chief current problem in controllability theory is the 

ekension to more elaborate algebraic structures. 

For a survey of the historical background of observability, 

which would take us too far afield here, the reader should consult 
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